Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes. 2008

John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
Bacterial Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States.

A successful method has been developed for the detection of live Yersinia pestis, the plague bacillus, which incorporates nascent RNA synthesis. A fluorescent in situ hybridization (FISH) assay using peptide nucleic acid (PNA) probes was developed specifically to differentiate Y. pestis strains from closely related bacteria. PNA probes were chosen to target high copy mRNA of the Y. pestis caf1 gene, encoding the Fraction 1 (F1) antigen, and 16S ribosomal RNA. Among Yersinia strains tested, PNA probes Yp-16S-426 and Yp-F1-55 exhibited binding specificities of 100% and 98%, respectively. Y. pestis grown in the presence of competing bacteria, as might be encountered when recovering Y. pestis from environmental surfaces in a post-release bioterrorism event, was recognized by PNA probes and neither hybridization nor fluorescence was inhibited by competing bacterial strains which exhibited faster growth rates. Using fluorescence microscopy, individual Y. pestis bacteria were clearly differentiated from competing bacteria with an average detection sensitivity of 7.9x10(3) cells by fluorescence microscopy. In the current system, this would require an average of 2.56x10(5) viable Y. pestis organisms be recovered from a post-release environmental sample in order to achieve the minimum threshold for detection. The PNA-FISH assays described in this study allow for the sensitive and specific detection of viable Y. pestis bacteria in a timely manner.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015010 Yersinia pestis The etiologic agent of PLAGUE in man, rats, ground squirrels, and other rodents. Bacillus pestis,Bacterium pestis,Pasteurella pestis,Pestisella pestis,Yersinia pseudotuberculosis subsp. pestis
D015169 Colony Count, Microbial Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing. Agar Dilution Count,Colony-Forming Units Assay, Microbial,Fungal Count,Pour Plate Count,Spore Count,Spread Plate Count,Streak Plate Count,Colony Forming Units Assay, Microbial,Colony Forming Units Assays, Microbial,Agar Dilution Counts,Colony Counts, Microbial,Count, Agar Dilution,Count, Fungal,Count, Microbial Colony,Count, Pour Plate,Count, Spore,Count, Spread Plate,Count, Streak Plate,Counts, Agar Dilution,Counts, Fungal,Counts, Microbial Colony,Counts, Pour Plate,Counts, Spore,Counts, Spread Plate,Counts, Streak Plate,Dilution Count, Agar,Dilution Counts, Agar,Fungal Counts,Microbial Colony Count,Microbial Colony Counts,Pour Plate Counts,Spore Counts,Spread Plate Counts,Streak Plate Counts
D015341 Nucleic Acid Probes Nucleic acid which complements a specific mRNA or DNA molecule, or fragment thereof; used for hybridization studies in order to identify microorganisms and for genetic studies. Acid Probes, Nucleic,Probes, Nucleic Acid
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH
D020135 Peptide Nucleic Acids DNA analogs containing neutral amide backbone linkages composed of aminoethyl glycine units instead of the usual phosphodiester linkage of deoxyribose groups. Peptide nucleic acids have high biological stability and higher affinity for complementary DNA or RNA sequences than analogous DNA oligomers. Peptide Nucleic Acid,Acid, Peptide Nucleic,Acids, Peptide Nucleic,Nucleic Acid, Peptide,Nucleic Acids, Peptide

Related Publications

John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
January 2020, Methods in molecular biology (Clifton, N.J.),
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
November 2002, Journal of clinical microbiology,
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
April 2013, BMC microbiology,
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
February 2001, Applied and environmental microbiology,
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
February 2010, Journal of medical microbiology,
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
January 2000, Journal of clinical microbiology,
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
September 1999, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease,
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
July 2016, Applied microbiology and biotechnology,
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
January 2007, Nature protocols,
John H Kenny, and Yan Zhou, and Martin E Schriefer, and Scott W Bearden
May 2014, New microbes and new infections,
Copied contents to your clipboard!