Affinity-based entrapment of the HER2 receptor in the endoplasmic reticulum using an affibody molecule. 2008

Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
Department of Molecular Biotechnology, Royal Institute of Technology, Albanova University Center, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden.

Interference with the export of cell surface receptors can be performed through co-expression of specific affinity molecules designed for entrapment in the endoplasmic reticulum during the export process. We describe the investigation of a small (6 kDa) non-immunoglobulin-based HER2 receptor binding affibody molecule (Z(HER2:00477)), for use in affinity mediated entrapment of the HER2 receptor in the ER. Constructs encoding Z(HER2:00477) or a control affibody protein, with or without ER-retention peptide extensions (KDEL), were expressed in the HER2 over-expressing cell line SKOV-3. Intracellular expression of the full-length affibody constructs could be confirmed by probing cell extracts by Western blotting. Confocal immunofluorescence microscopy experiments showed extensive co-localization of the HER2 receptor and Z(HER2:00477)-KDEL in the ER, whereas the use of a KDEL-extended control affibody molecule resulted in distinct and separate signals from cell surface-localized HER2 receptor and ER-localized affibody protein. This indicated a capability of the Z(HER2:00477)-KDEL fusion protein to functionally interfere with the export process of HER2 receptor in a specific manner. Using flow cytometry and cell proliferation analyses, it could be shown that expression of the Z(HER2:00477)-KDEL fusion construct in the SKOV-3 cell line resulted both in a marked reduction in cell surface level of HER2 receptors and that the cell population doubling time was significantly increased. Expression of the Z(HER2:00477)-KDEL fusion protein in additional cell lines of different origin and with different expression levels of endogenous HER2 receptor compared to SKOV-3, also resulted in depletion of the cell surface levels of HER2 receptor. This indicated upon a general ability of the Z(HER2:00477)-KDEL fusion protein to functionally interfere with the export process of HER2.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D018719 Receptor, ErbB-2 A cell surface protein-tyrosine kinase receptor that is overexpressed in a variety of ADENOCARCINOMAS. It has extensive homology to and heterodimerizes with the EGF RECEPTOR, the ERBB-3 RECEPTOR, and the ERBB-4 RECEPTOR. Activation of the erbB-2 receptor occurs through heterodimer formation with a ligand-bound erbB receptor family member. HER-2 Proto-Oncogene Protein,Proto-Oncogene Protein HER-2,Proto-Oncogene Protein p185(neu),c-erbB-2 Protein,erbB-2 Proto-Oncogene Protein,erbB-2 Receptor Protein-Tyrosine Kinase,neu Proto-Oncogene Protein,Antigens, CD340,CD340 Antigen,Erb-b2 Receptor Tyrosine Kinases,Metastatic Lymph Node Gene 19 Protein,Neu Receptor,Oncogene Protein HER-2,Proto-Oncogene Proteins c-erbB-2,Proto-oncogene Protein Neu,Receptor, Neu,Receptors, erbB-2,Tyrosine Kinase-type Cell Surface Receptor HER2,p185(c-neu),p185erbB2 Protein,CD340 Antigens,Erb b2 Receptor Tyrosine Kinases,ErbB-2 Receptor,HER 2 Proto Oncogene Protein,Oncogene Protein HER 2,Proto Oncogene Protein HER 2,Proto Oncogene Proteins c erbB 2,Proto-Oncogene Protein, HER-2,Proto-Oncogene Protein, erbB-2,Proto-Oncogene Protein, neu,Tyrosine Kinase type Cell Surface Receptor HER2,c erbB 2 Protein,erbB 2 Proto Oncogene Protein,erbB 2 Receptor Protein Tyrosine Kinase,erbB-2 Receptors,neu Proto Oncogene Protein

Related Publications

Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
April 2006, Cancer research,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
March 2011, Protein expression and purification,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
March 2007, Cancer research,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
January 2007, Bioconjugate chemistry,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
May 2022, Pharmaceutics,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
January 2012, PloS one,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
September 2008, Journal of fluorine chemistry,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
October 2013, Protein engineering, design & selection : PEDS,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
March 2010, PloS one,
Erik Vernet, and Anna Konrad, and Emma Lundberg, and Per-Ake Nygren, and Torbjörn Gräslund
July 2000, Trends in biochemical sciences,
Copied contents to your clipboard!