Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. 2008

Xiong Ma, and Jing Hua, and Zhiping Li
Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA. maxiongmd@hotmail.com

OBJECTIVE Dietary factors and intestinal bacteria play an important role in the rapidly increasing incidence of obesity and its associated conditions, such as steatosis and insulin resistance. In the current study, we evaluated the effect of probiotics, and their mechanisms on diet-induced obesity, steatosis and insulin resistance. METHODS Wild-type male C57BL6 mice were fed either normal or high fat diets. Some mice received VSL#3 probiotics. Animal weight, hepatic steatosis, insulin resistance, and their relationship to hepatic Natural Killer T cells (NKT) cell number and inflammatory signaling were evaluated. RESULTS High fat diet induced a depletion of hepatic NKT cells thus leading to insulin resistance and steatosis. Oral probiotic treatment significantly improved the high fat diet-induced hepatic NKT cell depletion, insulin resistance and hepatic steatosis. This effect was NKT cell dependant, resulted from the attenuation of the tumor necrosis factor-alpha and IkappaB kinase inflammatory signaling, and led to an improved sensitivity in insulin signaling. CONCLUSIONS Probiotics improve high fat diet-induced steatosis and insulin resistance. These effects of probiotics are likely due to increased hepatic NKT cell numbers and reduced inflammatory signaling.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005234 Fatty Liver Lipid infiltration of the hepatic parenchymal cells resulting in a yellow-colored liver. The abnormal lipid accumulation is usually in the form of TRIGLYCERIDES, either as a single large droplet or multiple small droplets. Fatty liver is caused by an imbalance in the metabolism of FATTY ACIDS. Liver Steatosis,Steatohepatitis,Steatosis of Liver,Visceral Steatosis,Liver Steatoses,Liver, Fatty,Steatohepatitides,Steatoses, Liver,Steatoses, Visceral,Steatosis, Liver,Steatosis, Visceral,Visceral Steatoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Xiong Ma, and Jing Hua, and Zhiping Li
August 2015, Journal of hepatology,
Xiong Ma, and Jing Hua, and Zhiping Li
December 2013, Food chemistry,
Xiong Ma, and Jing Hua, and Zhiping Li
April 2015, Pharmaceutical research,
Xiong Ma, and Jing Hua, and Zhiping Li
April 2012, Hepatology research : the official journal of the Japan Society of Hepatology,
Xiong Ma, and Jing Hua, and Zhiping Li
August 2023, Chemico-biological interactions,
Xiong Ma, and Jing Hua, and Zhiping Li
October 2018, Biochimica et biophysica acta. Molecular basis of disease,
Xiong Ma, and Jing Hua, and Zhiping Li
December 2009, American journal of physiology. Endocrinology and metabolism,
Xiong Ma, and Jing Hua, and Zhiping Li
November 2020, International journal of obesity (2005),
Copied contents to your clipboard!