Plasmid functions involved in the stable propagation of the pKD1 circular plasmid in Kluyveromyces lactis. 1991

M M Bianchi, and R Santarelli, and L Frontali
Department of Cell and Developmental Biology, University of Rome La Sapienza, Italy.

Plasmid factors involved in the stable propagation of pKD1-derived vectors in Kluyveromyces lactis transformants have been identified. Three genes (A, B and C) have been found to be present in pKD1: the interruption of the B and C genes led to high plasmid instability. Stability could be restored in trans when host cells contained pKD1 as the resident plasmid (pKD1+ strains). The A gene, which codes for a site-specific recombinase, did not affect plasmid partitioning. Vectors bearing only the pKD1 replication origin (or a chromosomal ARS), and no other pKD1 sequence, were very unstable both in the presence and absence of the resident plasmid in host cells. These vectors could be stabilized in pKD1+ strains, but not in pKD1 degree strains, by the insertion of a 200 bp-long pKD1 sequence. This sequence, called the cis-acting stability locus (CSL), together with the products of the B and C genes, ensured plasmid partitioning at cell division. Possible hairpin structures and direct repeats were regularly spaced within the CSL. This region, and the corresponding cis-acting stabilizing elements of other yeast plasmids, did not have sequence homology but shared some structural regularities.

UI MeSH Term Description Entries
D007716 Kluyveromyces An ascomycetous yeast of the fungal family Saccharomycetaceae, order SACCHAROMYCETALES. Kluyveromyce
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M M Bianchi, and R Santarelli, and L Frontali
June 1986, Nucleic acids research,
M M Bianchi, and R Santarelli, and L Frontali
February 2002, Applied microbiology and biotechnology,
M M Bianchi, and R Santarelli, and L Frontali
May 1983, Journal of bacteriology,
M M Bianchi, and R Santarelli, and L Frontali
July 1988, Nucleic acids research,
M M Bianchi, and R Santarelli, and L Frontali
January 1990, Yeast (Chichester, England),
M M Bianchi, and R Santarelli, and L Frontali
April 1998, Applied microbiology and biotechnology,
M M Bianchi, and R Santarelli, and L Frontali
August 1982, Current genetics,
M M Bianchi, and R Santarelli, and L Frontali
February 1992, Journal of general microbiology,
M M Bianchi, and R Santarelli, and L Frontali
January 1988, Nucleic acids research,
M M Bianchi, and R Santarelli, and L Frontali
February 1991, Current genetics,
Copied contents to your clipboard!