The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro. 1991

S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
Cold Spring Harbor Laboratory, New York 11724.

Although the human U2 and U6 snRNA genes are transcribed by different RNA polymerases (i.e., RNA polymerases II and III, respectively), their promoters are very similar in structure. Both contain a proximal sequence element (PSE) and an octamer motif-containing enhancer, and these elements are interchangeable between the two promoters. The RNA polymerase III specificity of the U6 promoter is conferred by a single A/T-rich element located around position -25. Mutation of the A/T-rich region converts the U6 promoter into an RNA polymerase II promoter, whereas insertion of the A/T-rich region into the U2 promoter converts that promoter into an RNA polymerase III promoter. We show that this A/T-rich element can be replaced by a number of TATA boxes derived from mRNA promoters transcribed by RNA polymerase II with little effect on RNA polymerase III transcription. Furthermore, the cloned RNA polymerase II transcription factor TFIID both binds to the U6 A/T-rich region and directs accurate RNA polymerase III transcription in vitro. Mutations in the U6 A/T-rich region that convert the U6 promoter into an RNA polymerase II promoter also abolish TFIID binding. Together, these observations suggest that in the human snRNA promoters, unlike in mRNA promoters, binding of TFIID directs the assembly of RNA polymerase III transcription complexes, whereas the lack of TFIID binding results in the assembly of RNA polymerase II snRNA transcription complexes.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II

Related Publications

S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
September 1995, Biochemical and biophysical research communications,
S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
July 1991, The EMBO journal,
S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
January 1989, Methods in enzymology,
S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
December 2007, Molecular and cellular biology,
S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
July 2014, The Journal of biological chemistry,
S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
May 2004, Molecular and cellular biology,
S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
August 1992, The Journal of biological chemistry,
S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
May 1990, Nucleic acids research,
S M Lobo, and J Lister, and M L Sullivan, and N Hernandez
January 2014, Transcription,
Copied contents to your clipboard!