The interfaces of actin and Acanthamoeba actobindin. Identification of a new actin-binding motif. 1991

K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
Laboratory of Physiological Chemistry, State University of Ghent, Belgium.

Actobindin is an 88-amino acid polypeptide, containing two almost identical repeated domains of 33 and 34 residues. Depending on the molar ratios in which they are mixed, actobindin binds either one or two actin molecules. We cross-linked actobindin and actin in the 1:1 complex, using the zero-length cross-linker 1-ethyl-3(3-dimethylaminopropyl)carbodiimide. The cross-linked peptides were purified after consecutive CNBr cleavage and trypsin and Staphylococcus protease V8 digestions, and the cross-linked side chains were identified by amino acid sequencing. Isopeptide linkages were formed between residues Glu-100 of actin and Lys-16 of actobindin. In addition, we found a connection between one or more of the acidic residues 1,2, or 3 of actin and Lys-16 and Lys-52 of actobindin. The cross-linked regions in actobindin contain Leu-Lys-His-Ala-Glu-Thr motifs, similar to sequences observed in several other actin-binding proteins.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D000048 Acanthamoeba A genus of free-living soil amoebae that produces no flagellate stage. Its organisms are pathogens for several infections in humans and have been found in the eye, bone, brain, and respiratory tract. Acanthamoebas
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
December 1986, The Journal of biological chemistry,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
February 1991, The Journal of biological chemistry,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
January 1991, Methods in enzymology,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
November 2012, International journal of molecular sciences,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
June 1994, Seminars in cell biology,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
March 1979, The Journal of biological chemistry,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
July 2008, Experimental parasitology,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
January 2006, Cell research,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
January 1986, The Journal of biological chemistry,
K Vancompernolle, and J Vandekerckhove, and M R Bubb, and E D Korn
March 1995, Biochemistry,
Copied contents to your clipboard!