Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro. 1991

K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
Department of Cellular Immunology, National Institute of Health, Tokyo, Japan.

The effects of granulocyte-macrophage (GM-CSF) or macrophage-CSF on in vitro proliferation of human alveolar macrophages (AM) were evaluated. AM of healthy volunteers incubated with recombinant human GM-CSF revealed incorporation of [3H]thymidine in vitro. The maximum incorporation was observed at 20 U/ml of GM-CSF on day 3. The proportion of proliferating cells incubated with 20 U/ml of GM-CSF from day 3 to day 4 was 8 to 11% of the total, whereas 3 to 5% of cells proliferated without GM-CSF. The number of cell nuclei increased 1.30- to 1.68-fold in the initial 7 days during incubation with 20 U/ml of GM-CSF, whereas there was a 1.07- to 1.13-fold increase without GM-CSF. Conditioned media obtained by the incubation with human lung tissue exhibited similar effects as recombinant human GM-CSF on macrophages. The effects were completely abrogated by antibody against human GM-CSF. Immunohistochemically, GM-CSF was detected in lung cells including AM, alveolar epithelium, alveolar interstitial cells, and endothelial cells. In contrast, recombinant macrophage-CSF did not induce the proliferation of human AM, although it has been known to promote the proliferation of murine AM. These observations suggest that GM-CSF plays an important role among the regulatory factors that locally support the population of AM in human lungs.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females

Related Publications

K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
December 1999, Human reproduction (Oxford, England),
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
November 1988, Journal of immunology (Baltimore, Md. : 1950),
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
June 1990, Laboratory investigation; a journal of technical methods and pathology,
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
May 1998, International immunology,
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
August 1989, Cancer research,
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
January 1989, Biotechnology therapeutics,
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
March 2021, AIDS research and human retroviruses,
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
January 1994, Journal of immunology (Baltimore, Md. : 1950),
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
July 1988, Journal of immunology (Baltimore, Md. : 1950),
K Nakata, and K S Akagawa, and M Fukayama, and Y Hayashi, and M Kadokura, and T Tokunaga
March 1990, Blood,
Copied contents to your clipboard!