Development and DNA polymerase activities in cultured preimplantation mouse embryos: comparison with embryos developed in vivo. 1991

A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
Department of Obstetrics, Gynecology and Reproductive Biology, Faulkner Centre for Reproductive Medicine, Harvard Medical School, Boston, Massachusetts 02130.

Embryos from superovulated female mice that developed in vitro from the two-cell stage were compared with in vivo embryos with respect to yield of blastocytes, number and types of cells, morphology in histologic section, and DNA polymerase activities. Significantly more embryos developed into blastocytes in vitro (93%) than in vivo (18%). Inner cell mass (ICM) cells comprised approximately 30% of total cells in late morula/early blastocyst stage embryos developed either in vitro or in vivo. However, the in vitro embryos developed approximately half the number of total cells as in vivo embryos, did not develop endoderm, and did not develop abembryonic trophoblast cells with morphologic characteristics of late preimplantation in vivo embryos. DNA-dependent DNA polymerase activities in in vitro embryos decreased in correspondence with the decrease in cell number resulting in per cell levels comparable to in vivo embryos. In contrast, the poly (A).oligo(dT)-dependent DNA polymerase activity was the same in embryos developing either in vitro or in vivo, indicating different regulatory mechanisms for the two enzyme activities. A variety of nutrients and growth factors in the culture medium did not increase cell numbers or DNA polymerase activities in embryos cultured for 3 days; extending the culture an additional 24 hours resulted in a loss of ICM cells and decreases in both DNA polymerase activities. These results show that the retarded growth of embryos in vitro is equally distributed between ICM and trophoblast, is not reversed by culture conditions that include serum growth factors, and is not due to decreased cellular levels of DNA polymerase activities.

UI MeSH Term Description Entries
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture

Related Publications

A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
June 1979, The Journal of experimental zoology,
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
December 1973, Journal of embryology and experimental morphology,
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
January 1982, Australian journal of biological sciences,
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
January 1996, Reproductive toxicology (Elmsford, N.Y.),
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
January 1981, The Journal of experimental zoology,
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
January 1987, Journal of reproduction and fertility,
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
January 1987, Annales de biologie clinique,
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
January 1989, Molecular reproduction and development,
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
December 2000, Biology of reproduction,
A A Kiessling, and H W Davis, and C S Williams, and R W Sauter, and L W Harrison
January 1993, Folia biologica,
Copied contents to your clipboard!