Signaling via the Tgf-beta type I receptor Alk5 in heart development. 2008

Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
University of Michigan, Department of Biologic and Materials Sciences, Ann Arbor, MI 48109, USA.

Trophic factors secreted both from the endocardium and epicardium regulate appropriate growth of the myocardium during cardiac development. Epicardially-derived cells play also a key role in development of the coronary vasculature. This process involves transformation of epithelial (epicardial) cells to mesenchymal cells (EMT). Similarly, a subset of endocardial cells undergoes EMT to form the mesenchyme of endocardial cushions, which function as primordia for developing valves and septa. While it has been suggested that transforming growth factor-betas (Tgf-beta) play an important role in induction of EMT in the avian epi- and endocardium, the function of Tgf-betas in corresponding mammalian tissues is still poorly understood. In this study, we have ablated the Tgf-beta type I receptor Alk5 in endo-, myo- and epicardial lineages using the Tie2-Cre, Nkx2.5-Cre, and Gata5-Cre driver lines, respectively. We show that while Alk5-mediated signaling does not play a major role in the myocardium during mouse cardiac development, it is critically important in the endocardium for induction of EMT both in vitro and in vivo. Moreover, loss of epicardial Alk5-mediated signaling leads to disruption of cell-cell interactions between the epicardium and myocardium resulting in a thinned myocardium. Furthermore, epicardial cells lacking Alk5 fail to undergo Tgf-beta-induced EMT in vitro. Late term mutant embryos lacking epicardial Alk5 display defective formation of a smooth muscle cell layer around coronary arteries, and aberrant formation of capillary vessels in the myocardium suggesting that Alk5 is controlling vascular homeostasis during cardiogenesis. To conclude, Tgf-beta signaling via Alk5 is not required in myocardial cells during mammalian cardiac development, but plays an irreplaceable cell-autonomous role regulating cellular communication, differentiation and proliferation in endocardial and epicardial cells.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010496 Pericardium A conical fibro-serous sac surrounding the HEART and the roots of the great vessels (AORTA; VENAE CAVAE; PULMONARY ARTERY). Pericardium consists of two sacs: the outer fibrous pericardium and the inner serous pericardium. The latter consists of an outer parietal layer facing the fibrous pericardium, and an inner visceral layer (epicardium) resting next to the heart, and a pericardial cavity between these two layers. Epicardium,Fibrous Pericardium,Parietal Pericardium,Pericardial Cavity,Pericardial Space,Serous Pericardium,Visceral Pericardium,Cavities, Pericardial,Cavity, Pericardial,Pericardial Cavities,Pericardial Spaces,Pericardium, Fibrous,Pericardium, Parietal,Pericardium, Serous,Pericardium, Visceral,Pericardiums, Fibrous,Pericardiums, Serous,Serous Pericardiums,Space, Pericardial,Spaces, Pericardial
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary

Related Publications

Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
December 2011, Current pharmaceutical biotechnology,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
January 2008, Mechanisms of development,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
August 2008, Developmental biology,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
July 2009, Molecular cell,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
December 2009, Journal of medicinal chemistry,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
January 2005, The Journal of biological chemistry,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
December 2004, Kidney international,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
August 2006, Developmental biology,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
July 1996, Biochimica et biophysica acta,
Somyoth Sridurongrit, and Jonas Larsson, and Robert Schwartz, and Pilar Ruiz-Lozano, and Vesa Kaartinen
August 2009, Developmental biology,
Copied contents to your clipboard!