OBJECTIVE To establish a chick model to investigate the trends of eye growth and emmetropization after early lensectomy for congenital cataract. METHODS Four monocular treatments were applied: lens extraction (LX); sham surgery/-30 D lens; LX/+20 D lens; and LX/+30-D lens (nine per group). Lens powers were selected to slightly undercorrect or overcorrect the induced hyperopia in LX eyes and to induce comparable hyperopia in sham-surgery eyes. Refractive errors and axial ocular dimensions were measured over a 28-day period. External ocular dimensions were obtained when the eyes were enucleated on the last day. RESULTS The growth patterns of experimental (Exp) eyes varied with the type of manipulation. All eyes experiencing hyperopia initially grew more than their fellow eyes and exhibited myopic shifts in refraction. The sham/-30 D lens group showed the greatest increase in optical axial length, followed by the LX group, and then the LX/+20 D lens group. The Exp eyes of the LX/+30 D lens group, which were initially slightly myopic, grew least, and showed a small hyperopic shift. Lensectomized eyes enlarged more equatorially than axially (i.e., oblate), irrespective of the optical treatment applied. CONCLUSIONS The refractive changes observed in young, aphakic eyes are consistent with compensation for the defocus experienced, and thus emmetropization. However, differences in the effects of lensectomy compared to those of sham surgery raise the possibility that the lens is a source of essential growth factors. Alterative optical and mechanical explanations are offered for the oblate shapes of aphakic eyes.