Synthetic peptides from the principal neutralizing domain of human immunodeficiency virus type 1 (HIV-1) enhance HIV-1 infection through a CD4-dependent mechanism. 1991

A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
Institute of Oncology, Interuniversity Center for Cancer Research, Padova, Italy.

The principal neutralizing domain (PND) of Human Immunodeficiency Virus type 1 (HIV-1) is mapped to a 24-amino acid sequence located in the hypervariable V3 region of the viral envelope protein. The PND of HIV-1 isolates from infected individuals corresponds mostly to that of the HIV-1 MN strain. We found that a peptide designed from the PND of HIV-1 MN virus greatly enhanced viral infection, while a peptide-derived PND of HTLV-IIIB virus showed at least 10-fold less efficient activity; no such effect was exhibited by the other peptides tested, including one designed from the PND of HIV-1 RF strain. The observed enhancing effect occurred in the early steps of viral infection and was not strain-restricted as both MN- and IIIB-derived peptides increased heterologous virus expression, including that of the RF strain. The MN- and, to a lesser extent, IIIB-derived peptides also increased CD4 expression on the cell membrane and differentially inhibited CD4 down-regulation induced by the phorbol ester TPA and/or by the monosialoganglioside GM1; the peptides showing no viral infection enhancement had no such effects. These findings demonstrate that the viral enhancement observed took place through a CD4-dependent mechanism and suggest that the PND is involved in HIV-1 infection and spread.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer

Related Publications

A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
March 1993, Biochemical and biophysical research communications,
A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
September 1989, Proceedings of the National Academy of Sciences of the United States of America,
A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
December 1991, Virology,
A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
February 2011, Virologie (Montrouge, France),
A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
January 1991, Journal of virology,
A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
January 1995, Vaccine,
A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
March 1993, Journal of virology,
A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
October 1995, Journal of virology,
A De Rossi, and M Pasti, and F Mammano, and M Panozzo, and M Dettin, and C Di Bello, and L Chieco-Bianchi
February 1995, Virology,
Copied contents to your clipboard!