[Interhemispheric connections of ocular-dominance columns in cats with binocular vision impairment]. 2008

S V Alekseenko, and S N Toporova, and P Iu Shkorbatova

We have investigated the interhemispheric connections of areas 17 and 18 in cats with impaired binocular vision (monocular deprivation, uni- and bilateral strabismus). Monosynaptic neuronal connections were studied using microionophoretic injections of horseradish peroxidase in the single cortical columns and analsys of spatial distribution of retrogradely labelled callosal cells was performed. In the cases of monocular deprivation and strabismus, the spatial asymmetry and eye-specificity of interhemispheric connections are retained. Quantitative changes of connections are more pronounced in strabismic cats. In cats with binocular vision impairments, as well as in control ones, the width of callosal-recipient zone is larger than of the callosal cells zone. This may indicate that interhemispheric connections are non-reciprocal in the areas of cortex that are more distant from the projection of vertical meridian of visual field. We expect that there should be morpho-functional in the cells that are providing connections in opposite directions.

UI MeSH Term Description Entries
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012683 Sensory Deprivation The absence or restriction of the usual external sensory stimuli to which the individual responds. Deprivation, Sensory,Deprivations, Sensory,Sensory Deprivations
D013285 Strabismus Misalignment of the visual axes of the eyes. In comitant strabismus the degree of ocular misalignment does not vary with the direction of gaze. In noncomitant strabismus the degree of misalignment varies depending on direction of gaze or which eye is fixating on the target. (Miller, Walsh & Hoyt's Clinical Neuro-Ophthalmology, 4th ed, p641) Concomitant Strabismus,Dissociated Horizontal Deviation,Dissociated Vertical Deviation,Heterophoria,Heterotropias,Hypertropia,Non-Concomitant Strabismus,Nonconcomitant Strabismus,Phorias,Squint,Strabismus, Comitant,Strabismus, Noncomitant,Convergent Comitant Strabismus,Mechanical Strabismus,Comitant Strabismus,Comitant Strabismus, Convergent,Deviation, Dissociated Horizontal,Dissociated Horizontal Deviations,Dissociated Vertical Deviations,Heterophorias,Heterotropia,Horizontal Deviation, Dissociated,Hypertropias,Non Concomitant Strabismus,Noncomitant Strabismus,Phoria,Strabismus, Concomitant,Strabismus, Convergent Comitant,Strabismus, Mechanical,Strabismus, Non-Concomitant,Strabismus, Nonconcomitant
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D015348 Vision, Binocular The blending of separate images seen by each eye into one composite image. Binocular Vision
D015349 Vision, Monocular Images seen by one eye. Monocular Vision,Monovision
D023882 Dominance, Ocular The functional superiority and preferential use of one eye over the other. The term is usually applied to superiority in sighting (VISUAL PERCEPTION) or motor task but not difference in VISUAL ACUITY or dysfunction of one of the eyes. Ocular dominance can be modified by visual input and NEUROTROPHIC FACTORS. Eye Dominance,Eyedness,Dominance, Eye,Ocular Dominance

Related Publications

S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
January 2015, Morfologiia (Saint Petersburg, Russia),
S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
October 1975, American journal of optometry and physiological optics,
S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
November 1953, A.M.A. archives of ophthalmology,
S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
January 2006, Visual neuroscience,
S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
August 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
January 2023, Frontiers in neural circuits,
S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
November 2000, Science (New York, N.Y.),
S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
January 1986, Oftalmologicheskii zhurnal,
S V Alekseenko, and S N Toporova, and P Iu Shkorbatova
November 2006, Journal of neurophysiology,
Copied contents to your clipboard!