[Different coexisting genotypes in the breast cancer cell line MDA-MB-468]. 2008

K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
Gerhard Domagk Institut für Pathologie, Universitätsklinikum Münster, Domagkstr. 17, 48149 Münster. agelopoulos@uni-muenster.de

Intratumor genetic heterogeneity, a well-known characteristic of numerous cancers, often confounds a precise diagnosis and leads to therapy resistance. This study deals with such chromosomal variability, which may be due to an inherent genetic instability affecting heterogeneity and clonal effects. Subpopulations of the breast cancer cell line MDA-MB-468 were isolated according to epidermal growth factor receptor (EGFR) expression by FACS. Whole genome profiling (CGH; mapping arrays) and determination of egfr gene amplification (fluorescence in situ hybridisation, FISH; qPCR) were done directly after sorting or after several passages of cell culture. Subpopulations differed in the amplification of the egfr-locus 7p11-14 showing egfr gene amplification rates of up to 60-fold in high-level expressing populations and less than 2-fold in low-level expressing populations. However, after several passages the original low-level cells showed a new amplification of the egfr gene, which was as heterogeneous as the original amplification detected in MDA-MB-468. Additional, spontaneously expressed fragile sites could be shown in FISH analyses which may affect cell culture heterogeneity. Understanding the precise chromosomal process would clarify mechanisms in vivo and improve both diagnosis and therapy of corresponding cancers.

UI MeSH Term Description Entries
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D005260 Female Females
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH
D043171 Chromosomal Instability An increased tendency to acquire CHROMOSOME ABERRATIONS when various processes involved in chromosome replication, repair, or segregation are dysfunctional. Chromosomal Stability,Chromosome Instability,Chromosome Stability,Chromosomal Instabilities,Chromosomal Stabilities,Chromosome Instabilities,Chromosome Stabilities,Instabilities, Chromosomal,Instabilities, Chromosome,Instability, Chromosomal,Instability, Chromosome,Stabilities, Chromosomal,Stabilities, Chromosome,Stability, Chromosomal,Stability, Chromosome
D043283 Chromosome Fragile Sites Specific loci that show up during KARYOTYPING as a gap (an uncondensed stretch in closer views) on a CHROMATID arm after culturing cells under specific conditions. These sites are associated with an increase in CHROMOSOME FRAGILITY. They are classified as common or rare, and by the specific culture conditions under which they develop. Fragile site loci are named by the letters "FRA" followed by a designation for the specific chromosome, and a letter which refers to which fragile site of that chromosome (e.g. FRAXA refers to fragile site A on the X chromosome. It is a rare, folic acid-sensitive fragile site associated with FRAGILE X SYNDROME.) Fragile Sites, Chromosome,Chromosome Fragile Site,Fragile Site, Chromosome,Site, Chromosome Fragile,Sites, Chromosome Fragile

Related Publications

K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
January 2022, Anti-cancer agents in medicinal chemistry,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
June 1992, Cancer research,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
November 2014, Biomedical reports,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
April 2008, Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
August 2010, Journal of cellular biochemistry,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
May 1996, Clinical cancer research : an official journal of the American Association for Cancer Research,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
October 1994, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
April 2014, Oncology reports,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
August 2002, Acta anaesthesiologica Scandinavica,
K Agelopoulos, and H Schmidt, and E Korsching, and H Buerger, and B Brandt
December 2023, RSC advances,
Copied contents to your clipboard!