Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: implications for cochlear mechanisms. 1991

R A Eatock, and T F Weiss, and K L Otto
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139.

1. Rate-level functions for individual cochlear nerve fibers of the alligator lizard, Gerrhonotus multicarinatus, were generated by measuring a fiber's driven discharge rate (the difference between the average discharge rates in the presence and absence of a tone burst) as a function of sound pressure level. 2. When plotted in double logarithmic coordinates, the rate-level function approaches a straight line at low sound pressure levels and saturates at high levels. Thus the rate-level function is a saturating power function of sound pressure. We developed an algorithm to estimate the exponent of the straight-line portion of the function. When tested on simulated data with known parameters, the algorithm provided unbiased estimates of the exponent. 3. Nerve fibers innervating two distinct regions of the alligator lizard's auditory organ, the free-standing region and the tectorial region, have differing rate-level functions. 4. The mean exponent estimate of the rate-level functions of fibers innervating the free-standing region is approximately 2 at all frequencies. For stimulus frequencies at the characteristic frequency (CF), the mean value was 2.1 +/- 0.10 (SE, n = 131). For stimulus frequencies above and below CF, the mean exponent estimates were 2.1 +/- 0.13 (n = 49) and 2.1 +/- 0.11 (n = 34), respectively. A value of 2 is expected for a broad class of nonlinear systems. 5. The mean exponent estimates of the rate-level functions of fibers innervating the tectorial region were 3.0 +/- 0.30 (n = 32) for stimulus frequencies at CF, 2.5 +/- 0.33 (n = 3) for stimulus frequencies below CF, and 1.0 +/- 0.21 (n = 16) for stimulus frequencies above CF. Both the deviation from square-law behavior at CF and the frequency dependence of the exponent imply that nonlinear processing in the tectorial region differs intrinsically from that in the free-standing region. 6. For free-standing fibers, the saturation rate of the rate-level function (the maximum driven rate) is independent of stimulus frequency. This suggests that, in the free-standing region, 1) the alternating (AC) component of the receptor potential makes no significant contribution to the average rate of discharge and 2) neural saturation results from a process that occurs after the narrow-band frequency-selective process(es). 7. In tectorial fibers, the saturation rate is a bandpass function of sound frequency, with a broad peak between 150 and 300 Hz. This function appears to be common to all tectorial fibers.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R A Eatock, and T F Weiss, and K L Otto
May 1990, The Journal of comparative neurology,
R A Eatock, and T F Weiss, and K L Otto
March 1985, The Journal of comparative neurology,
R A Eatock, and T F Weiss, and K L Otto
October 1976, Brain research,
R A Eatock, and T F Weiss, and K L Otto
September 2023, Journal of neurophysiology,
R A Eatock, and T F Weiss, and K L Otto
January 1974, Brain, behavior and evolution,
R A Eatock, and T F Weiss, and K L Otto
October 1983, Hearing research,
R A Eatock, and T F Weiss, and K L Otto
September 1993, Hearing research,
R A Eatock, and T F Weiss, and K L Otto
December 1978, Brain research,
R A Eatock, and T F Weiss, and K L Otto
January 1980, Hearing research,
Copied contents to your clipboard!