Neurally-derived nitric oxide regulates vascular tone in pulmonary and cutaneous arteries of the toad, Bufo marinus. 2008

Brett L Jennings, and John A Donald
School of Life and Environmental Sciences, Deakin Univ., Geelong, Victoria, Australia 3217. brettj@deakin.edu.au

In this study, the role of nitric oxide (NO) in regulation of the pulmocutaneous vasculature of the toad, Bufo marinus was investigated. In vitro myography demonstrated the presence of a neural NO signaling mechanism in both arteries. Vasodilation induced by nicotine was inhibited by the soluble guanylyl cyclase (GC) inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, and the NO synthase (NOS) inhibitor, N(omega)-nitro-l-arginine (l-NNA). Removal of the endothelium had no significant effect on the vasodilation. Furthermore, pretreatment with N(5)-(1-imino-3-butenyl)-l-ornithine (vinyl-l-NIO), a more specific inhibitor of neural NOS, caused a significant decrease in the nicotine-induced dilation. In the pulmonary artery only, a combination of l-NNA and the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP((8-37)), completely blocked the nicotine-induced dilation. In both arteries, the vasodilation was also significantly decreased by glibenclamide, an ATP-sensitive K(+) (K(+)(ATP)) channel inhibitor. Levcromakalim, a K(+)(ATP) channel opener, caused a dilation that was blocked by glibenclamide in both arteries. In the pulmonary artery, NO donor-mediated dilation was significantly decreased by pretreatment with glibenclamide. The physiological data were supported by NADPH-diaphorase histochemistry and immunohistochemistry, which demonstrated NOS in perivascular nerve fibers but not the endothelium of the arteries. These results indicate that the pulmonary and cutaneous arteries of B. marinus are regulated by NO from nitrergic nerves rather than NO released from the endothelium. The nitrergic vasodilation in the arteries appears to be caused, in part, via activation of K(+)(ATP) channels. Thus, NO could play an important role in determining pulmocutaneous blood flow and the magnitude of cardiac shunting.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009129 Muscle Tonus The state of activity or tension of a muscle beyond that related to its physical properties, that is, its active resistance to stretch. In skeletal muscle, tonus is dependent upon efferent innervation. (Stedman, 25th ed) Muscle Tension,Muscle Tightness,Muscular Tension,Tension, Muscle,Tension, Muscular,Tightness, Muscle,Tonus, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009252 NADPH Dehydrogenase A flavoprotein that reversibly oxidizes NADPH to NADP and a reduced acceptor. EC 1.6.99.1. NADP Dehydrogenase,NADP Diaphorase,NADPH Diaphorase,Old Yellow Enzyme,TPN Diaphorase,Dehydrogenase, NADP,Dehydrogenase, NADPH,Diaphorase, NADP,Diaphorase, NADPH,Diaphorase, TPN,Enzyme, Old Yellow
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums

Related Publications

Brett L Jennings, and John A Donald
April 2005, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
Brett L Jennings, and John A Donald
January 1976, Cell and tissue research,
Brett L Jennings, and John A Donald
September 1971, Comparative and general pharmacology,
Brett L Jennings, and John A Donald
November 1984, The American journal of physiology,
Brett L Jennings, and John A Donald
June 1978, Cell and tissue research,
Brett L Jennings, and John A Donald
December 1976, General pharmacology,
Brett L Jennings, and John A Donald
August 1985, The American journal of physiology,
Brett L Jennings, and John A Donald
January 1986, Comparative biochemistry and physiology. A, Comparative physiology,
Brett L Jennings, and John A Donald
August 2003, American journal of physiology. Heart and circulatory physiology,
Brett L Jennings, and John A Donald
October 2002, The Journal of experimental biology,
Copied contents to your clipboard!