Urethane and N-nitrosodiethylamine are mutagenic for the Syrian hamster fetus. 2008

Paul J Donovan, and George T Smith
Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Building 538, Room 205 NCI-Frederick, Frederick, MD 21702-1201, USA. donovapa@mail.nih.gov

Urethane and N-nitrosodiethylamine are soluble environmental carcinogens that initiate tumors transplacentally, but have a mixed history of effectiveness in mutagenesis assays in vitro or in vivo with adult rodents. To test for their transplacental mutagenicity, Syrian hamster fetuses at 12 days in gestation were exposed transplacentally to urethane or N-nitrosodiethylamine at 0.5 or 1.0 mM/kg. The fetal cells were isolated on day 13 of gestation and tested for diphtheria toxin resistance as a mutation marker. Both compounds were significantly mutagenic, at both doses, causing 6- to 20-fold increases in mutations compared with controls. Compared with N-nitrosodiethylamine, urethane was somewhat more effective as a mutagen with a more marked dose-response. These results are consistent with mutagenesis as part of the mechanism of transplacental carcinogenicity of urethane and N-nitrosodiethylamine.

UI MeSH Term Description Entries
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004052 Diethylnitrosamine A nitrosamine derivative with alkylating, carcinogenic, and mutagenic properties. Nitrosodiethylamine,N-Nitrosodiethylamine,N Nitrosodiethylamine
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Paul J Donovan, and George T Smith
June 1963, Cancer research,
Paul J Donovan, and George T Smith
February 1984, Acta pharmacologica et toxicologica,
Paul J Donovan, and George T Smith
January 1993, Toxicology,
Paul J Donovan, and George T Smith
January 1976, Mutation research,
Paul J Donovan, and George T Smith
May 1969, Cancer research,
Paul J Donovan, and George T Smith
February 1970, Chemico-biological interactions,
Paul J Donovan, and George T Smith
January 1990, Archives of toxicology,
Copied contents to your clipboard!