Aging increases upper airway collapsibility in Fischer 344 rats. 2008

Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
Center for Research and Education in Special Environments, State University of New York at Buffalo, 515 Kimball Tower, 3435 Main St., Buffalo, NY 14214, USA. adr@buffalo.edu

The upper airway muscles play an important role in maintaining upper airway collapsibility, and the incidence of sleep-disordered breathing increases with age. We hypothesize that the increase in airway collapsibility with increasing age can be linked to changes in upper airway muscle mechanics and structure. Eight young (Y: 6 mo) and eight old (O: 30 mo) Fischer 344 rats were anesthetized and mechanically ventilated, and the pharyngeal pressure associated with flow limitation (Pcrit) was measured 1) with the hypoglossal (cnXII) nerve intact, 2) following bilateral cnXII denervation, and 3) during cnXII stimulation. With the cnXII intact, the upper airways of older rats were more collapsible compared with their younger counterparts [Pcrit = -7.1 +/- 0.6 (SE) vs. -9.5 +/- 0.7 cmH2O, respectively; P = 0.033]. CnXII denervation resulted in an increase in Pcrit such that Pcrit became similar in both groups (O: -4.2 +/- 0.5 cmH2O; Y: -5.4 +/- 0.5 cmH2O). In all rats, cnXII stimulation decreased Pcrit (less collapsible) in both groups (O: -11.3 +/- 1.0 cmH2O; Y: -10.2 +/- 1.0 cmH2O). The myosin heavy chain composition of the genioglossus muscle demonstrated a decrease in the percentage of the IIb isoform (38.3 +/- 2.5 vs. 21.7 +/- 1.7%; P < 0.001); in contrast, the sternohyoid muscle demonstrated an increase in the percentage of the IIb isoform (72.2 +/- 2.5 vs. 58.4 +/- 2.3%; P = 0.001) with age. We conclude that the upper airway becomes more collapsible with age and that the increase in upper airway collapsibility with age is likely related to altered neural control rather than to primary alterations in upper airway muscle structure and function.

UI MeSH Term Description Entries
D007002 Hypoglossal Nerve The 12th cranial nerve. The hypoglossal nerve originates in the hypoglossal nucleus of the medulla and supplies motor innervation to all of the muscles of the tongue except the palatoglossus (which is supplied by the vagus). This nerve also contains proprioceptive afferents from the tongue muscles. Cranial Nerve XII,Twelfth Cranial Nerve,Nerve XII,Nervus Hypoglossus,Cranial Nerve XIIs,Cranial Nerve, Twelfth,Cranial Nerves, Twelfth,Hypoglossal Nerves,Hypoglossus, Nervus,Nerve XII, Cranial,Nerve XIIs,Nerve XIIs, Cranial,Nerve, Hypoglossal,Nerve, Twelfth Cranial,Nerves, Hypoglossal,Nerves, Twelfth Cranial,Twelfth Cranial Nerves,XII, Nerve,XIIs, Nerve
D008297 Male Males
D010609 Pharyngeal Muscles The muscles of the PHARYNX are voluntary muscles arranged in two layers. The external circular layer consists of three constrictors (superior, middle, and inferior). The internal longitudinal layer consists of the palatopharyngeus, the salpingopharyngeus, and the stylopharyngeus. During swallowing, the outer layer constricts the pharyngeal wall and the inner layer elevates pharynx and LARYNX. Palatopharyngeus,Muscles of Pharynx,Palatopharyngeal Muscle,Salpingopharyngeus,Stylopharyngeus,Velopharyngeal Muscle,Muscle, Palatopharyngeal,Muscle, Pharyngeal,Muscle, Velopharyngeal,Muscles, Pharyngeal,Pharyngeal Muscle,Pharynx Muscle,Pharynx Muscles
D010614 Pharynx A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx). Throat,Pharynxs,Throats
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
January 1986, Toxicology,
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
January 1991, Physiology & behavior,
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
June 2004, The Journal of pharmacy and pharmacology,
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
May 2008, Respiratory physiology & neurobiology,
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
November 1985, Journal of gerontology,
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
November 1992, The Journal of nutrition,
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
January 1988, Veterinary pathology,
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
September 1998, Experimental gerontology,
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
September 1998, Journal of applied physiology (Bethesda, Md. : 1985),
Andrew D Ray, and Toshiyuki Ogasa, and Ulysses J Magalang, and John A Krasney, and Gaspar A Farkas
May 1977, Journal of gerontology,
Copied contents to your clipboard!