In vivo effect of indomethacin to potentiate the renal medullary cyclic AMP response to vasopressin. 1977

G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald

In a previous study we demonstrated that indomethacin potentiated the hydro-osmotic action of vasopressin in vivo. It was hypothesized that this action of indomethacin was due to its ability to suppress renal medullary prostaglandin synthesis, since in vitro studies have suggested that prostaglandins interfere with the ability of vasopressin to stimulate production of its intracellular mediator, cyclic AMP. In the present study this hypothesis was tested in vivo. Anesthetized rats undergoing a water diuresis were studied. In a control group, bolus injections of 200 muU of vasopressin caused a rise in urinary osmolality (Uosm) from 124 +/- 6 to 253 +/- 20 mosmol/kg H2O (P less than 0.005). In a group treated with 2 mg/kg of indomethacin the same dose of vasopressin caused a significantly greater (P less than 0.001) rise in Uosm from 124 +/- 7 to 428 +/- 19 mosmol/kg H2O. Medullary tissue cyclic AMP rose from 9.4 +/- 0.9 to 13.4 +/- 1.7 (P less than 0.05) pmol/mg tissue protein after vasopressin administration in animals receiving no indomethacin, while in indomethacin-treated animals there was a significantly greater rise (P less than 0.001) in medullary cyclic AMP from 10.4 +/- 0.9 to 21.6 +/- 2.1 pmol/mg tissue protein in response to the vasopressin injections. In neither control animals nor indomethacin-treated animals were there significant changes in renal hemodynamics, as measured by clearance techniques. Indomethacin, when given alone, had no effect on Uosm or medullary tissue cyclic AMP. Indomethacin did, however, reduce medullary prostaglandin E content from 84.7 +/- 15.0 to 15.6 +/- 4.3 pg/mg tissue. This study has shown that indomethacin, in a dose which suppresses medullary prostaglandin content, potentiates the ability of vasopressin to increase the tissue content of its intracellular mediator, cyclic AMP. Indomethacin caused no demonstrable inhibition of cyclic AMP phosphodiesterase. Therefore, it seems likely that indomethacin enhanced the ability of vasopressin to increase medullary cyclic AMP levels by causing an increased production rather than decreased destruction of the nucleotide. We conclude that this action of indomethacin contributes to its ability to potentiate the hydro-osmotic action of vasopressin in vivo. A corollary to this conclusion is that endogenous medullary prostaglandin E's may be significant physiological modulators of the renal response to vasopressin.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008297 Male Males
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005260 Female Females
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
September 1986, The American journal of physiology,
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
November 1984, The Journal of endocrinology,
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
October 1973, The American journal of physiology,
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
January 1983, Journal of cyclic nucleotide and protein phosphorylation research,
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
August 1982, Endocrinologia japonica,
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
May 1986, Clinical science (London, England : 1979),
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
March 1964, The American journal of physiology,
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
May 1978, Pflugers Archiv : European journal of physiology,
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
January 1982, The Journal of laboratory and clinical medicine,
G M Lum, and G A Aisenbrey, and M J Dunn, and T Berl, and R W Schrier, and K M McDonald
October 1987, Clinical science (London, England : 1979),
Copied contents to your clipboard!