| D009682 |
Magnetic Resonance Spectroscopy |
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). |
In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR |
|
| D004353 |
Drug Evaluation, Preclinical |
Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications. |
Drug Screening,Evaluation Studies, Drug, Pre-Clinical,Drug Evaluation Studies, Preclinical,Drug Evaluations, Preclinical,Evaluation Studies, Drug, Preclinical,Evaluation, Preclinical Drug,Evaluations, Preclinical Drug,Medicinal Plants Testing, Preclinical,Preclinical Drug Evaluation,Preclinical Drug Evaluations,Drug Screenings,Screening, Drug,Screenings, Drug |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|
| D015394 |
Molecular Structure |
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. |
Structure, Molecular,Molecular Structures,Structures, Molecular |
|
| D045744 |
Cell Line, Tumor |
A cell line derived from cultured tumor cells. |
Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines |
|
| D047428 |
Protein Kinase Inhibitors |
Agents that inhibit PROTEIN KINASES. |
Protein Kinase Inhibitor,Inhibitor, Protein Kinase,Inhibitors, Protein Kinase,Kinase Inhibitor, Protein,Kinase Inhibitors, Protein |
|
| D018360 |
Crystallography, X-Ray |
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) |
X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies |
|
| D019859 |
Proto-Oncogene Proteins c-met |
Cell surface protein-tyrosine kinase receptors for HEPATOCYTE GROWTH FACTOR. They consist of an extracellular alpha chain which is disulfide-linked to the transmembrane beta chain. The cytoplasmic portion contains the catalytic domain and sites critical for the regulation of kinase activity. Mutations in the c-met proto-oncogene are associated with papillary renal carcinoma and other neoplasia. |
HGF Receptor,Hepatocyte Growth Factor Receptor,c-met Proteins,met Proto-Oncogene Proteins,MET Proto-Oncogene, Receptor Tyrosine Kinase,MET Receptor Tyrosine Kinase,Receptor, HGF,Receptor, Hepatocyte Growth Factor,Receptor, Scatter Factor,Scatter Factor Receptor,c-Met Receptor Tyrosine Kinase,MET Proto Oncogene, Receptor Tyrosine Kinase,Proto Oncogene Proteins c met,Proto-Oncogene Proteins, met,c Met Receptor Tyrosine Kinase,c met Proteins,met Proto Oncogene Proteins |
|
| D021241 |
Spectrometry, Mass, Electrospray Ionization |
A mass spectrometry technique used for analysis of nonvolatile compounds such as proteins and macromolecules. The technique involves preparing electrically charged droplets from analyte molecules dissolved in solvent. The electrically charged droplets enter a vacuum chamber where the solvent is evaporated. Evaporation of solvent reduces the droplet size, thereby increasing the coulombic repulsion within the droplet. As the charged droplets get smaller, the excess charge within them causes them to disintegrate and release analyte molecules. The volatilized analyte molecules are then analyzed by mass spectrometry. |
ESI Mass Spectrometry,Electrospray Ionization Mass Spectrometry,Mass Spectrometry, ESI,Spectrometry, ESI Mass |
|