Oxygen supply and uptake in tissue models with unequal distribution of blood flow and shunt. 1991

J Piiper, and P Haab
Abteilung Physiologie, Max-Planck-Institut für experimentelle Medizin, Göttingen, Germany.

The effects of unequal distribution of blood flow on O2 uptake are studied on a model composed of 3 tissues compartments with blood flow/O2 requirement ratios in the relation 9:3:1 (unequal blood flow model), a model with 33% shunt blood flow (shunt model), and a single compartment model without shunt (reference model). Diffusion limitation is assumed to be absent. Total blood flow (Q), arterial O2 content (CaO2) and O2 requirement of tissue are varied singly, and the resulting (mixed) venous O2 content (CvO2) and O2 uptake are calculated. In the reference model, CvO2 become zero, and O2 uptake starts falling below the O2 requirement, as soon as the O2 delivery (Q.CaO2) becomes smaller than the O2 requirement. In contrast, in the unequal blood flow model, decrease in the ratio O2 uptake/O2 requirement and in CvO2 sets in earlier, and proceeds more gradually, with decreasing Q or CaO2 or increasing O2 requirement; this is, because O2 delivery limitation sets in sequentially in the compartments, starting with the least perfused compartment. The shunt model behaves similarly to the reference model if Q or O2 requirement is varied, and to the unequal blood flow model if CaO2 is varied. Some features such as the parallel fall of O2 uptake and of CVO2 with decreasing CaO2, common to the unequal blood flow and shunt models, are similar to expected effects of diffusion limitation. Therefore, when the influence of diffusion limitation on tissue O2 supply is to be investigated quantitatively, the effects of a possible unequal distribution of blood flow must be taken into account.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011659 Pulmonary Gas Exchange The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER. Exchange, Pulmonary Gas,Gas Exchange, Pulmonary
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Piiper, and P Haab
August 1972, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
J Piiper, and P Haab
July 1982, Kokyu to junkan. Respiration & circulation,
J Piiper, and P Haab
January 1992, Advances in experimental medicine and biology,
J Piiper, and P Haab
January 1993, Journal of applied physiology (Bethesda, Md. : 1985),
J Piiper, and P Haab
September 1972, Annals of biomedical engineering,
J Piiper, and P Haab
June 1953, The Journal of clinical investigation,
J Piiper, and P Haab
April 1995, The Journal of veterinary medical science,
J Piiper, and P Haab
January 1990, Respiration physiology,
J Piiper, and P Haab
April 1964, The American journal of physiology,
Copied contents to your clipboard!