Peroxisome proliferator-activated receptor gamma down-regulates follistatin in intestinal epithelial cells through SP1. 2008

Brian M Necela, and Weidong Su, and E Aubrey Thompson
Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA. necela.brian@mayo.edu

Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) down-regulates the expression of follistatin mRNA in intestinal epithelial cells in vivo. The mechanism of PPARgamma-mediated down-regulation of follistatin was investigated using non-transformed, rat intestinal epithelial cells (RIE-1). RIE cells expressed activin A, the activin receptors ActRI and ActRII, and the follistatin-315 mRNA. RIE-1 cells responded to endogenous activin A, and this response was antagonized by follistatin, as evidenced by changes in cell growth and regulation of an activin-responsive reporter. Using RIE-1 cells, we show that activation of PPARgamma by rosiglitazone reduced follistatin mRNA levels in a dose- and concentration-dependent manner. Down-regulation of follistatin by rosiglitazone required the DNA binding domain of PPARgamma and was dependent upon dimerization with the retinoid X receptor. Inhibition of follistatin expression by rosiglitazone was not associated with decreased follistatin mRNA stability, suggesting that regulation may be at the promoter level. Analysis of the follistatin promoter revealed consensus binding sites for AP-1, AP-2, and Sp1. Targeting the AP-1 pathway with SP600125, an inhibitor of JNK, and TAM67, a dominant negative c-Jun, had no effect on PPARgamma-mediated down-regulation of follistatin. However, the follistatin promoter was dramatically regulated by Sp1, and this regulation was inhibited by PPARgamma expression. Knockdown of Sp1 expression relieved repression of follistatin levels by rosiglitazone. Moreover, PPARgamma was found to interact with Sp1 and repress its transcriptional activation function. Collectively, our data indicate that repression of Sp1 transcriptional activity by PPARgamma is the underlying mechanism responsible for PPARgamma-mediated regulation of follistatin expression.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000077154 Rosiglitazone A thiazolidinedione that functions as a selective agonist for PPAR GAMMA. It improves INSULIN SENSITIVITY in adipose tissue, skeletal muscle, and the liver of patients with TYPE 2 DIABETES MELLITUS. 5-((4-(2-Methyl-2-(pyridinylamino)ethoxy)phenyl)methyl)-2,4-thiazolidinedione-2-butenedioate,Avandia,BRL 49653,BRL-49653,BRL49653,Rosiglitazone Maleate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000873 Anthracenes A group of compounds with three aromatic rings joined in linear arrangement.

Related Publications

Brian M Necela, and Weidong Su, and E Aubrey Thompson
June 2001, American journal of respiratory cell and molecular biology,
Brian M Necela, and Weidong Su, and E Aubrey Thompson
January 2003, Endocrinology,
Brian M Necela, and Weidong Su, and E Aubrey Thompson
January 2007, The international journal of biochemistry & cell biology,
Brian M Necela, and Weidong Su, and E Aubrey Thompson
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
Brian M Necela, and Weidong Su, and E Aubrey Thompson
June 2009, Allergology international : official journal of the Japanese Society of Allergology,
Brian M Necela, and Weidong Su, and E Aubrey Thompson
August 2003, The Journal of biological chemistry,
Brian M Necela, and Weidong Su, and E Aubrey Thompson
July 2005, Molecular and cellular biochemistry,
Brian M Necela, and Weidong Su, and E Aubrey Thompson
February 2011, Modern rheumatology,
Brian M Necela, and Weidong Su, and E Aubrey Thompson
May 2005, Gynecologic oncology,
Copied contents to your clipboard!