Flow cytometric sorting of bacterial surface-displayed libraries. 2007

Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
University of California, Santa Barbara, California, USA.

The protocols herein detail methods for isolating binding peptides from a combinatorial library displayed on the surface of bacterial cells. These methods are appropriate for a variety of display scaffolds and a large range of library sizes, up to approximately 5 x 10(9) or more. Instructions have been provided for isolating peptides that bind to both proteins and non-protein targets, such as whole cells or inorganic particles. Qualitative analysis by flow cytometry can be exploited for bacterial libraries to characterize a displayed peptide's binding properties with a target of interest, and sorting conditions can be tuned to maximize binding affinity.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D020650 Combinatorial Chemistry Techniques A technology, in which sets of reactions for solution or solid-phase synthesis, is used to create molecular libraries for analysis of compounds on a large scale. Chemistry Techniques, Combinatorial,Techniques, Combinatorial Chemistry,Chemistry Technic, Combinatorial,Chemistry Technics, Combinatorial,Chemistry Technique, Combinatorial,Combinatorial Chemistry Technic,Combinatorial Chemistry Technics,Combinatorial Chemistry Technique,Technic, Combinatorial Chemistry,Technics, Combinatorial Chemistry,Technique, Combinatorial Chemistry
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
January 2004, Methods in molecular biology (Clifton, N.J.),
Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
October 1997, BioTechniques,
Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
January 1998, Biotechnology progress,
Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
January 2011, Methods in molecular biology (Clifton, N.J.),
Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
August 2020, Advanced biosystems,
Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
January 2007, Nucleic acids research,
Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
September 2000, Journal of immunological methods,
Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
January 2011, Methods in cell biology,
Sophia Kenrick, and Jeffrey Rice, and Patrick Daugherty
September 2005, Theriogenology,
Copied contents to your clipboard!