Idd9/11 genetic locus regulates diabetogenic activity of CD4 T-cells in nonobese diabetic (NOD) mice. 2008

Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
The Jackson Laboratory, Bar Harbor, ME, USA.

OBJECTIVE Although the H2(g7) major histocompatibility complex (MHC) provides the primary pathogenic component, the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice also requires contributions from other susceptibility (Idd) genes. Despite sharing the H2(g7) MHC, the closely NOD-related NOR strain remains type 1 diabetes resistant because of contributions of protective Idd5.2, Idd9/11, and Idd13 region alleles. To aid their eventual identification, we evaluated cell types in which non-MHC Idd resistance genes in NOR mice exert disease-protective effects. METHODS Adoptive transfer and bone marrow chimerism approaches tested the diabetogenic activity of CD4 and CD8 T-cells from NOR mice and NOD stocks congenic for NOR-derived Idd resistance loci. Tetramer staining and mimotope stimulation tested the frequency and proliferative capacity of CD4 BDC2.5-like cells. Regulatory T-cells (Tregs) were identified by Foxp3 staining and functionally assessed by in vitro suppression assays. RESULTS NOR CD4 T-cells were less diabetogenic than those from NOD mice. The failure of NOR CD4 T-cells to induce type 1 diabetes was not due to decreased proliferative capacity of BDC2.5 clonotypic-like cells. The frequency and function of Tregs in NOD and NOR mice were also equivalent. However, bone marrow chimerism experiments demonstrated that intrinsic factors inhibited the pathogenic activity of NOR CD4 T-cells. The NOR Idd9/11 resistance region on chromosome 4 was found to diminish the diabetogenic activity of CD4 but not CD8 T-cells. CONCLUSIONS In conclusion, we demonstrated that a gene(s) within the Idd9/11 region regulates the diabetogenic activity of CD4 T-cells.

UI MeSH Term Description Entries
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000938 Antigen-Presenting Cells A heterogeneous group of immunocompetent cells that mediate the cellular immune response by processing and presenting antigens to the T-cells. Traditional antigen-presenting cells include MACROPHAGES; DENDRITIC CELLS; LANGERHANS CELLS; and B-LYMPHOCYTES. FOLLICULAR DENDRITIC CELLS are not traditional antigen-presenting cells, but because they hold antigen on their cell surface in the form of IMMUNE COMPLEXES for B-cell recognition they are considered so by some authors. Accessory Cells, Immunologic,Antigen-Presenting Cell,Immunologic Accessory Cells,Accessory Cell, Immunologic,Cell, Immunologic Accessory,Cells, Immunologic Accessory,Immunologic Accessory Cell,Antigen Presenting Cell,Antigen Presenting Cells,Cell, Antigen-Presenting,Cells, Antigen-Presenting
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D016176 T-Lymphocyte Subsets A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells. T-Cell Subset,T-Cell Subsets,T-Lymphocyte Subset,Subset, T-Cell,Subset, T-Lymphocyte,Subsets, T-Cell,Subsets, T-Lymphocyte,T Cell Subset,T Cell Subsets,T Lymphocyte Subset,T Lymphocyte Subsets
D016513 Mice, SCID Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice. SCID Mice,SCID-hu Mice,Severe Combined Immunodeficient Mice,Immunodeficient Mice, Severe Combined,Mouse, SCID,Mouse, SCID-hu,Mice, SCID-hu,Mouse, SCID hu,SCID Mouse,SCID hu Mice,SCID-hu Mouse
D016688 Mice, Inbred NOD A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked. Non-Obese Diabetic Mice,Mice, NOD,Mouse, Inbred NOD,Mouse, NOD,Non-Obese Diabetic Mouse,Nonobese Diabetic Mice,Nonobese Diabetic Mouse,Diabetic Mice, Non-Obese,Diabetic Mice, Nonobese,Diabetic Mouse, Non-Obese,Diabetic Mouse, Nonobese,Inbred NOD Mice,Inbred NOD Mouse,Mice, Non-Obese Diabetic,Mice, Nonobese Diabetic,Mouse, Non-Obese Diabetic,Mouse, Nonobese Diabetic,NOD Mice,NOD Mice, Inbred,NOD Mouse,NOD Mouse, Inbred,Non Obese Diabetic Mice,Non Obese Diabetic Mouse

Related Publications

Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
January 2007, Proceedings of the National Academy of Sciences of the United States of America,
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
May 2000, Journal of immunology (Baltimore, Md. : 1950),
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
November 2006, Journal of immunology (Baltimore, Md. : 1950),
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
January 2014, Results in immunology,
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
April 2001, Diabetes,
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
March 2015, Journal of immunology (Baltimore, Md. : 1950),
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
August 2012, Journal of immunology (Baltimore, Md. : 1950),
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
May 1998, Laboratory investigation; a journal of technical methods and pathology,
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
May 2000, Immunopharmacology and immunotoxicology,
Yi-Guang Chen, and Felix Scheuplein, and Melissa A Osborne, and Shirng-Wern Tsaih, and Harold D Chapman, and David V Serreze
January 1996, The Journal of experimental medicine,
Copied contents to your clipboard!