Molecular basis of the interaction between complement receptor type 2 (CR2/CD21) and Epstein-Barr virus glycoprotein gp350. 2008

Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
Institute of Structural Biology and Molecular Biology, School of Biological Sciences, Mayfield Road, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom. Jonathan.Hannan@ed.ac.uk

The binding of the Epstein-Barr virus glycoprotein gp350 by complement receptor type 2 (CR2) is critical for viral attachment to B lymphocytes. We set out to test hypotheses regarding the molecular nature of this interaction by developing an enzyme-linked immunosorbent assay (ELISA) for the efficient analysis of the gp350-CR2 interaction by utilizing wild-type and mutant forms of recombinant gp350 and also of the CR2 N-terminal domains SCR1 and SCR2 (designated CR2 SCR1-2). To delineate the CR2-binding site on gp350, we generated 17 gp350 single-site substitutions targeting an area of gp350 that has been broadly implicated in the binding of both CR2 and the major inhibitory anti-gp350 monoclonal antibody (MAb) 72A1. These site-directed mutations identified a novel negatively charged CR2-binding surface described by residues Glu-21, Asp-22, Glu-155, Asp-208, Glu-210, and Asp-296. We also identified gp350 amino acid residues involved in non-charge-dependent interactions with CR2, including Tyr-151, Ile-160, and Trp-162. These data were supported by experiments in which phycoerythrin-conjugated wild-type and mutant forms of gp350 were incubated with CR2-expressing K562 cells and binding was assessed by flow cytometry. The ELISA was further utilized to identify several positively charged residues (Arg-13, Arg-28, Arg-36, Lys-41, Lys-57, Lys-67, Arg-83, and Arg-89) within SCR1-2 of CR2 that are involved in the binding interaction with gp350. These experiments allowed a comparison of those CR2 residues that are important for binding gp350 to those that define the epitope for an effective inhibitory anti-CR2 MAb, 171 (Asn-11, Arg-13, Ser-32, Thr-34, Arg-36, and Tyr-64). The mutagenesis data were used to calculate a model of the CR2-gp350 complex using the soft-docking program HADDOCK.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017354 Point Mutation A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair. Mutation, Point,Mutations, Point,Point Mutations
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D017464 Receptors, Complement 3d Molecular sites on or in B-lymphocytes, follicular dendritic cells, lymphoid cells, and epithelial cells that recognize and combine with COMPLEMENT C3D. Human complement receptor 2 (CR2) serves as a receptor for both C3dg and the gp350/220 glycoprotein of HERPESVIRUS 4, HUMAN, and binds the monoclonal antibody OKB7, which blocks binding of both ligands to the receptor. Antigens, CD21,C3d Receptors,CD21 Antigens,CR2 Receptors,Complement 3d Receptors,Complement Receptors 2,Epstein-Barr Virus Receptors,Receptors, C3d,Receptors, CR2,CD 21 Antigens,CD21 Antigen,Complement 3d Receptor,Complement Receptor 2,Epstein-Barr Virus Receptor,Herpesvirus 4 Receptors, Human,Receptors, Epstein-Barr Virus,Antigen, CD21,Antigens, CD 21,Epstein Barr Virus Receptor,Epstein Barr Virus Receptors,Receptor 2, Complement,Receptor, Complement 3d,Receptor, Epstein-Barr Virus,Receptors 2, Complement,Receptors, Epstein Barr Virus,Virus Receptor, Epstein-Barr,Virus Receptors, Epstein-Barr

Related Publications

Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
December 2007, The Journal of biological chemistry,
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
July 2022, Journal of molecular graphics & modelling,
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
January 1990, Current topics in microbiology and immunology,
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
March 1990, Journal of virology,
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
December 1999, European journal of immunology,
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
August 2001, Journal of immunology (Baltimore, Md. : 1950),
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
January 2016, Current protein & peptide science,
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
May 2020, Journal of virology,
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
June 1987, European journal of immunology,
Kendra A Young, and Andrew P Herbert, and Paul N Barlow, and V Michael Holers, and Jonathan P Hannan
July 1991, The Journal of biological chemistry,
Copied contents to your clipboard!