Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. 1991

S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
Muscle Biology Laboratory, University of Wisconsin-Madison 53706.

Myofibrillogenesis was studied in cultured chick cardiomyocytes using indirect immunofluorescence microscopy and antibodies against alpha- and gamma-actin, muscle and nonmuscle tropomyosin, muscle myosin, and titin. Initially, cardiomyocytes, devoid of myofibrils, developed variable numbers of stress fiber-like structures with uniform staining for anti-muscle and nonmuscle actin and tropomyosin, and diffuse, weak staining with anti-titin. Anti-myosin labeled bundles of filaments that exhibited variable degrees of association with the stress fiber-like structures. Myofibrillogenesis occurred with a progressive, and generally simultaneous, longitudinal reorganization of stress fiber-like structures to form primitive sarcomeric units. Titin appeared to attain its mature pattern before the other major contractile proteins. Changes in the staining patterns of actin, tropomyosin, and myosin as myofibrils matured were interpreted as due to longitudinal filament alignment occurring before ordering in the axial direction. Non-muscle actin and tropomyosin were found with sarcomeric periodicity in the initial stages of sarcomere myofibrillogenesis, although their staining patterns were not identical. The localization of the "sarcomeric" proteins alpha-actin and muscle tropomyosin in stress fiber-like structures and the incorporation of non-muscle proteins in the initial stages of sarcomere organization bring into question the meaning of "sarcomeric" proteins in regard to myofibrillogenesis.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
September 1988, The Journal of cell biology,
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
February 1987, The Biochemical journal,
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
November 1995, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
April 1993, Developmental dynamics : an official publication of the American Association of Anatomists,
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
September 2014, Cytoskeleton (Hoboken, N.J.),
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
November 1996, Journal of biochemistry,
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
May 1989, Journal of biochemistry,
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
October 1990, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
January 1985, Hybridoma,
S E Handel, and M L Greaser, and E Schultz, and S M Wang, and J C Bulinski, and J J Lin, and J L Lessard
June 2000, Tissue & cell,
Copied contents to your clipboard!