XY follicle cells in the ovaries of XO/XY and XO/XY/XYY mosaic mice. 1991

S J Palmer, and P S Burgoyne
MRC Mammalian Development Unit, London, UK.

XO/XY and XO/XY/XYY mosaic hermaphrodites were generated from crosses involving BALB/cWt males. The distribution of Y-bearing cells in the gonads of these mice was studied by in situ hybridisation using the Y-specific probe pY353B. XY cells were found to contribute to all cell lineages of the ovary including follicle cells. The proportion of XY follicle cells was not significantly different from the XY contribution to other gonadal or non-gonadal cell lineages. However, this proportion was consistently low, all the hermaphrodites having a low XY contribution to the animal as a whole. Because the XO- and Y-bearing cell lineages are developmentally balanced, the XY follicle cells cannot have formed as a result of a 'mismatch' in which the Y-directed testis determination process is pre-empted by an early acting programme of ovarian development. These results are discussed with respect to the hypothesis that Tdy acts in the supporting cell lineage, the lineage from which Sertoli cells and follicle cells are believed to be derived.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009030 Mosaicism The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from a single ZYGOTE, as opposed to CHIMERISM in which the different cell populations are derived from more than one zygote.
D005260 Female Females
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012729 Sex Chromosome Aberrations Abnormal number or structure of the SEX CHROMOSOMES. Some sex chromosome aberrations are associated with SEX CHROMOSOME DISORDERS and SEX CHROMOSOME DISORDERS OF SEX DEVELOPMENT. Sex Chromosome Abnormalities,Abnormalities, Sex Chromosome,Chromosome Abnormalities, Sex,Aberration, Sex Chromosome,Aberrations, Sex Chromosome,Abnormality, Sex Chromosome,Chromosome Aberration, Sex,Chromosome Aberrations, Sex,Chromosome Abnormality, Sex,Sex Chromosome Aberration,Sex Chromosome Abnormality
D012734 Disorders of Sex Development In gonochoristic organisms, congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. Effects from exposure to abnormal levels of GONADAL HORMONES in the maternal environment, or disruption of the function of those hormones by ENDOCRINE DISRUPTORS are included. Disorders of Sexual Development,Sex Development Disorders,Sex Differentiation Disorders,Ambiguous Genitalia,Genital Ambiguity,Hermaphroditism,Intersex Conditions,Intersexuality,Pseudohermaphroditism,Sexual Development Disorders,Sexual Differentiation Disorders,Ambiguities, Genital,Ambiguity, Genital,Condition, Intersex,Conditions, Intersex,Differentiation Disorder, Sex,Differentiation Disorder, Sexual,Differentiation Disorders, Sex,Differentiation Disorders, Sexual,Disorder, Sex Differentiation,Disorder, Sexual Differentiation,Disorders, Sex Differentiation,Disorders, Sexual Differentiation,Genital Ambiguities,Genitalia, Ambiguous,Intersex Condition,Intersexualities,Sex Development Disorder,Sex Differentiation Disorder,Sexual Development Disorder,Sexual Differentiation Disorder
D014960 X Chromosome The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species. Chromosome, X,Chromosomes, X,X Chromosomes
D014998 Y Chromosome The male sex chromosome, being the differential sex chromosome carried by half the male gametes and none of the female gametes in humans and in some other male-heterogametic species in which the homologue of the X chromosome has been retained. Chromosome, Y,Chromosomes, Y,Y Chromosomes

Related Publications

S J Palmer, and P S Burgoyne
March 1966, Archives francaises de pediatrie,
S J Palmer, and P S Burgoyne
January 1967, Pediatrie,
S J Palmer, and P S Burgoyne
October 1967, Nederlands tijdschrift voor geneeskunde,
S J Palmer, and P S Burgoyne
December 1988, Development (Cambridge, England),
S J Palmer, and P S Burgoyne
April 1963, Revue francaise d'etudes cliniques et biologiques,
S J Palmer, and P S Burgoyne
December 1967, Jinrui idengaku zasshi. The Japanese journal of human genetics,
S J Palmer, and P S Burgoyne
November 1975, The Journal of endocrinology,
S J Palmer, and P S Burgoyne
March 1972, The Journal of pediatrics,
S J Palmer, and P S Burgoyne
October 1981, The Japanese journal of veterinary research,
Copied contents to your clipboard!