Deep cytoplasmic rearrangements during early development in Xenopus laevis. 1991

M V Danilchik, and J M Denegre
Department of Biology, Wesleyan University, Middletown, Connecticut 06459.

The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002970 Cleavage Stage, Ovum The earliest developmental stage of a fertilized ovum (ZYGOTE) during which there are several mitotic divisions within the ZONA PELLUCIDA. Each cleavage or segmentation yields two BLASTOMERES of about half size of the parent cell. This cleavage stage generally covers the period up to 16-cell MORULA. Segmentation Stage, Ovum,Cleavage Stages, Ovum,Ovum Cleavage Stage,Ovum Cleavage Stages,Ovum Segmentation Stage,Ovum Segmentation Stages,Segmentation Stages, Ovum
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts

Related Publications

M V Danilchik, and J M Denegre
November 1993, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M V Danilchik, and J M Denegre
April 1983, Biochimica et biophysica acta,
M V Danilchik, and J M Denegre
February 1996, The International journal of developmental biology,
M V Danilchik, and J M Denegre
June 1975, Proceedings of the National Academy of Sciences of the United States of America,
M V Danilchik, and J M Denegre
April 1995, Mechanisms of development,
M V Danilchik, and J M Denegre
August 1980, Journal of embryology and experimental morphology,
M V Danilchik, and J M Denegre
July 2008, PloS one,
M V Danilchik, and J M Denegre
June 1993, Developmental biology,
M V Danilchik, and J M Denegre
January 1990, Molecular biology reports,
M V Danilchik, and J M Denegre
January 1991, Methods in cell biology,
Copied contents to your clipboard!