Inhibition of 5S RNA transcription in vitro by nucleosome cores with low or high levels of histone acetylation. 1991

M Roberge, and T E O'Neill, and E M Bradbury
Department of Biological Chemistry, Faculty of Medicine, University of California, Davis 95616.

Nucleosomes exert strong inhibitory effects on gene transcription in vitro and in vivo. Since most DNA is packaged in nucleosomes, there must exist mechanisms to alleviate this inhibition during gene activation. Nucleosomes could be destabilized by histone acetylation which is strongly correlated with gene expression. We have compared the effects of nucleosomes cores with low or high levels of histone acetylation on 5S RNA transcription with Xenopus nuclear extracts in vitro. Little or no difference was observed over a range of 1 to 15 nucleosome cores per plasmid template. This result suggests that nucleosomal DNA is not more accessible to transcription factors and to the transcription machinery in acetylated nucleosomes.

UI MeSH Term Description Entries
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

M Roberge, and T E O'Neill, and E M Bradbury
October 2023, Nucleic acids research,
M Roberge, and T E O'Neill, and E M Bradbury
November 1991, The EMBO journal,
M Roberge, and T E O'Neill, and E M Bradbury
April 2006, Nature structural & molecular biology,
M Roberge, and T E O'Neill, and E M Bradbury
January 1993, Cold Spring Harbor symposia on quantitative biology,
M Roberge, and T E O'Neill, and E M Bradbury
November 1978, Journal of biochemistry,
M Roberge, and T E O'Neill, and E M Bradbury
January 1983, Molekuliarnaia biologiia,
M Roberge, and T E O'Neill, and E M Bradbury
September 1980, European journal of biochemistry,
M Roberge, and T E O'Neill, and E M Bradbury
January 2013, Nucleus (Austin, Tex.),
M Roberge, and T E O'Neill, and E M Bradbury
July 2022, Biochimica et biophysica acta. Gene regulatory mechanisms,
M Roberge, and T E O'Neill, and E M Bradbury
February 2006, DNA and cell biology,
Copied contents to your clipboard!