A marker-coupled method for site-directed mutagenesis. 1991

T J Shen, and L Q Zhu, and X Sun
Department of Nucleic Acids Biochemistry, Institute of Biophysics, Beijing, China.

A marker-coupled method for site-directed mutagenesis (SDM) has been developed. In this method, target DNA is first cloned into a plasmid vector which carries an inactivated tetracycline-resistance (TcR)-encoding tet gene. Using this cloned plasmid as template, polymerase chain reaction (PCR) is performed with a mutagenic primer and a marker primer. The mutagenic primer contains the desired mutations to be introduced into the target DNA, and the marker primer contains a mutation for restoring the activity of the inactivated tet gene. The PCR product is annealed with a gapped duplex plasmid template, extended and ligated in vitro. The resulting uni-strand-mutated plasmid is converted into the gapped duplex form, transformed into Escherichia coli JM109 and spread on yeast extract/tryptone culture medium + Tc plates. The TcR colonies grown on these plates all carry active tet genes. Due to the 'tight coupling' between the marker primer and the mutagenic primer formed in the PCR product, these TcR colonies should also carry the mutagenic primer, e.g., the desired mutations in the target DNA. In fact, practically all of the TcR colonies have been found to be the desired mutants in the present experiments. Therefore, this method provides a very efficient approach for SDM.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013753 Tetracycline Resistance Nonsusceptibility of bacteria to the action of TETRACYCLINE which inhibits aminoacyl-tRNA binding to the 30S ribosomal subunit during protein synthesis.
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

T J Shen, and L Q Zhu, and X Sun
March 2001, BioTechniques,
T J Shen, and L Q Zhu, and X Sun
November 2010, Analytical biochemistry,
T J Shen, and L Q Zhu, and X Sun
January 1981, Nature,
T J Shen, and L Q Zhu, and X Sun
January 2016, Scientific reports,
T J Shen, and L Q Zhu, and X Sun
February 1994, Nucleic acids research,
T J Shen, and L Q Zhu, and X Sun
June 1988, BioTechniques,
T J Shen, and L Q Zhu, and X Sun
January 1994, Methods in molecular biology (Clifton, N.J.),
T J Shen, and L Q Zhu, and X Sun
January 2003, Methods in molecular biology (Clifton, N.J.),
T J Shen, and L Q Zhu, and X Sun
April 1990, BioTechniques,
Copied contents to your clipboard!