Apoptotic force and tissue dynamics during Drosophila embryogenesis. 2008

Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
Physics Department and Free Electron Laser Laboratory, Duke University, Durham, NC 27708, USA.

Understanding cell morphogenesis during metazoan development requires knowledge of how cells and the extracellular matrix produce and respond to forces. We investigated how apoptosis, which remodels tissue by eliminating supernumerary cells, also contributes forces to a tissue (the amnioserosa) that promotes cell-sheet fusion (dorsal closure) in the Drosophila embryo. We showed that expression in the amnioserosa of proteins that suppress or enhance apoptosis slows or speeds dorsal closure, respectively. These changes correlate with the forces produced by the amnioserosa and the rate of seam formation between the cell sheets (zipping), key processes that contribute to closure. This apoptotic force is used by the embryo to drive cell-sheet movements during development, a role not classically attributed to apoptosis.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D000078404 Epidermal Cells Cells from the outermost, non-vascular layer (EPIDERMIS) of the skin. Epidermal Cell,Epidermic Cells,Cell, Epidermal,Cell, Epidermic,Cells, Epidermic,Epidermic Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
August 2013, Journal of visualized experiments : JoVE,
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
January 2006, Cell and tissue research,
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
December 2016, Data in brief,
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
January 2012, PloS one,
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
November 2000, Development (Cambridge, England),
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
September 2006, Arthropod structure & development,
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
January 1994, Acta anatomica,
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
January 2005, Methods in molecular medicine,
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
July 1994, Development (Cambridge, England),
Yusuke Toyama, and Xomalin G Peralta, and Adrienne R Wells, and Daniel P Kiehart, and Glenn S Edwards
January 1993, Development (Cambridge, England),
Copied contents to your clipboard!