Tests for genotoxicity and mutagenicity of furan and its metabolite cis-2-butene-1,4-dial in L5178Y tk+/- mouse lymphoma cells. 2008

Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.

Furan is found in various food items and is cytotoxic and carcinogenic in the liver of rats and mice. Metabolism of furan includes the formation of an unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). In view of the multifunctional electrophilic reactivity of BDA, adduct formation with protein and DNA may explain some of the toxic effects. Short-term tests for genotoxicity of furan in mammalian cells are inconclusive, little is known for BDA. We investigated BDA generated by hydrolysis of 2,5-diacetoxy-2,5-dihydrofuran for genotoxicity in L5178Y tk+/- mouse lymphoma cells using standard procedures for the comet assay, the micronucleus test, and the mouse lymphoma thymidine kinase gene mutation assay, using 4-h incubation periods. Cytotoxicity was remarkable: cell viability at concentrations>or=50 microM was reduced to <50%. In the dose range up to 25 microM, viability was >90%. Measures of comet-tail length and thymidine-kinase mutant frequency were increased 1.6- and 2.4-fold above control, respectively. Analysis of three fully independent replicates with a linear mixed-effects model showed a highly significant increase with concentration for both endpoints. Compared to methyl methanesulfonate used as a positive control, BDA was of similar potency with respect to genotoxicity, but it was much more cytotoxic. Furan added to cell cultures at doses that resulted in time-averaged effective concentrations of up to 3100 microM was neither cytotoxic nor genotoxic. A potential cross-linking activity of BDA was investigated by checking whether gamma radiation-induced DNA migration in the comet assay could be reduced by pre-treatment with BDA. In contrast to the effect of the positive control glutaraldehyde, BDA treatment did not reduce the comet tail length. On the contrary, an increase was observed at >or=100 microM BDA, which was attributable to early apoptotic cells. Although BDA was found to be a relatively potent genotoxic agent in terms of the concentration necessary to double the background measures, cytotoxicity strongly limited the concentration range that produced interpretable results. This may explain some of the inconclusive results and indicates that non-genotoxic effects must be taken into account in the discussion of the modes of toxic and carcinogenic action of furan.

UI MeSH Term Description Entries
D007940 Leukemia L5178 An experimental lymphocytic leukemia of mice. Lymphoma L5178,L5178, Leukemia,L5178, Lymphoma
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005663 Furans Compounds with a 5-membered ring of four carbons and an oxygen. They are aromatic heterocycles. The reduced form is tetrahydrofuran. Tetrahydrofurans
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
January 1995, Chemical research in toxicology,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
March 2002, Chemical research in toxicology,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
July 2000, Chemical research in toxicology,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
June 2005, Chemical research in toxicology,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
March 2006, Chemical research in toxicology,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
August 1997, Chemical research in toxicology,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
October 2005, Drug metabolism and disposition: the biological fate of chemicals,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
January 2010, Chemical research in toxicology,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
June 2009, Chemical research in toxicology,
Marco Kellert, and Andreas Brink, and Ingrid Richter, and Josef Schlatter, and Werner K Lutz
January 1987, Mutation research,
Copied contents to your clipboard!