Amitriptyline activates cardiac ryanodine channels and causes spontaneous sarcoplasmic reticulum calcium release. 2009

Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
Oates Institute for Experimental Therapeutics and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0575, USA.

Patients taking amitriptyline (AMT) have an increased risk of sudden cardiac death, yet the mechanism for AMT's proarrhythmic effects remains incompletely understood. Here, we hypothesize that AMT activates cardiac ryanodine channels (RyR2), causing premature Ca(2+) release from the sarcoplasmic reticulum (SR), a mechanism identified by genetic studies as a cause of ventricular arrhythmias and sudden cardiac death. To test this hypothesis, we measured the effect of AMT on RyR2 channels from mice and sheep and on intact mouse cardiomyocytes loaded with the Ca(2+) fluorescent indicator Fura-2 acetoxymethyl ester. AMT induced trains of long channel openings (bursts) with 60 to 90% of normal conductance in RyR2 channels incorporated in lipid bilayers. The [AMT], voltage, and open probability (P(o)) dependencies of burst frequency and duration indicated that AMT binds primarily to open RyR2 channels. AMT also activated RyR2 channels isolated from transgenic mice lacking cardiac calsequestrin. Reducing RyR2 P(o) by increasing cytoplasmic [Mg(2+)] significantly inhibited the AMT effect on RyR2 channels. Consistent with the single RyR2 channel data, AMT increased the rate of spontaneous Ca(2+) releases and decreased the SR Ca(2+) content in intact cardiomyocytes. Intracellular [AMT] were approximately 5-fold higher than extracellular [AMT], explaining AMT's higher potency in cardiomyocytes at clinically relevant concentrations (0.5-3 muM) compared with its effect in lipid bilayers (5-10 muM). Increasing extracellular [Mg(2+)] attenuated the effect of AMT in intact myocytes. We conclude that the heretofore unrecognized activation of RyR2 channels and increased SR Ca(2+) leak may contribute to AMT's proarrhythmic and cardiotoxic effects, which may be counteracted by interventions that reduce RyR2 channel open probability.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000639 Amitriptyline Tricyclic antidepressant with anticholinergic and sedative properties. It appears to prevent the re-uptake of norepinephrine and serotonin at nerve terminals, thus potentiating the action of these neurotransmitters. Amitriptyline also appears to antagonize cholinergic and alpha-1 adrenergic responses to bioactive amines. Amineurin,Amitrip,Amitriptylin Beta,Amitriptylin Desitin,Amitriptylin RPh,Amitriptylin-Neuraxpharm,Amitriptyline Hydrochloride,Amitrol,Anapsique,Apo-Amitriptyline,Damilen,Domical,Elavil,Endep,Laroxyl,Lentizol,Novoprotect,Saroten,Sarotex,Syneudon,Triptafen,Tryptanol,Tryptine,Tryptizol,Amitriptylin Neuraxpharm,Apo Amitriptyline,Desitin, Amitriptylin,RPh, Amitriptylin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
February 2011, Heart rhythm,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
September 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
June 2000, The Journal of pharmacology and experimental therapeutics,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
February 1997, The Biochemical journal,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
January 1982, Annual review of physiology,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
January 1989, Annals of the New York Academy of Sciences,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
November 1992, Cell calcium,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
March 2009, Clinical and experimental pharmacology & physiology,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
June 1987, Biochimica et biophysica acta,
Nagesh Chopra, and Derek Laver, and Sean S Davies, and Björn C Knollmann
February 1988, Cell calcium,
Copied contents to your clipboard!