Right-left ventricular output balance in the totally implantable artificial heart. 1991

D B Olsen, and R K White, and J W Long, and P S Khanwilkar
Artificial Heart Research Laboratory, University of Utah, Salt Lake City.

Pneumatically powered artificial hearts readily accommodated the higher net stroke volumes by the right ventricle than from the left ventricle. We published that this discrepancy was approximately 8% of the left ventricular cardiac output. A variety of methods have been used to achieve balance between the right and left atrial pressures. Relatively large volume-displacement chambers (VDC) present potential problems, but do provide balance. The VDC in volumetrically coupled right-left stroke volumes was eliminated by using a small-diameter interatrial shunt (IAS). Preliminary studies demonstrated excellent balance in contracted and expanded blood volume (preload) and by hypotension and hypertension created with vasoactive drugs (afterload). At a mean aortic pressure of 120 mmHg, heart rate of 120 BPM, cardiac output of 8 L/minute and right atrial pressure of 13 mmHg, the peak IAS flow was 3.2 ml/beat in a right to left direction and 8.0 ml/beat in a left to right direction. The net left to right flow was 4.8 ml/beat. Over a wide range of preload (2 to 20 mmHg) and afterload (45 to 180 mmHg), the left atrial pressure was routinely 5 mm Hg more than the right atrial pressure. Elimination of the VDC reduces the number of components, volume, and weight of the totally implantable artificial heart. The IAS offers a simple solution to a very complex problem and provides a device that is simpler to implant and is possible to explant.

UI MeSH Term Description Entries
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006354 Heart, Artificial A pumping mechanism that duplicates the output, rate, and blood pressure of the natural heart. It may replace the function of the entire heart or a portion of it, and may be an intracorporeal, extracorporeal, or paracorporeal heart. (Dorland, 28th ed) Artificial Heart,Artificial Hearts,Hearts, Artificial
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions

Related Publications

D B Olsen, and R K White, and J W Long, and P S Khanwilkar
January 1962, Circulation research,
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
November 1973, The Hastings Center report,
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
September 2002, Nihon Geka Gakkai zasshi,
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
March 2001, The Annals of thoracic surgery,
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
August 1992, Artificial organs,
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
January 1992, ASAIO journal (American Society for Artificial Internal Organs : 1992),
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
February 1992, Artificial organs,
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
October 2003, Archives des maladies du coeur et des vaisseaux,
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
October 2003, Archives des maladies du coeur et des vaisseaux,
D B Olsen, and R K White, and J W Long, and P S Khanwilkar
September 1954, The American journal of physiology,
Copied contents to your clipboard!