Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT. 2008

Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
Department of Biological Structures, Functions and Technologies, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy. Electronic address: pavone@dbbm.unina.it.

Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT(Cre/+);ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventricle and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.

UI MeSH Term Description Entries
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D006351 Heart Valves Flaps of tissue that prevent regurgitation of BLOOD from the HEART VENTRICLES to the HEART ATRIA or from the PULMONARY ARTERIES or AORTA to the ventricles. Cardiac Valves,Cardiac Valve,Heart Valve,Valve, Cardiac,Valve, Heart,Valves, Cardiac,Valves, Heart
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D050486 Serotonin Plasma Membrane Transport Proteins Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of serotonergic neurons. They are different than SEROTONIN RECEPTORS, which signal cellular responses to SEROTONIN. They remove SEROTONIN from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS. Regulates signal amplitude and duration at serotonergic synapses and is the site of action of the SELECTIVE SEROTONIN REUPTAKE INHIBITORS. Neurotransmitter Transport Proteins, Serotonin-Specific,Neurotransmitter Transporters, Serotonin-Specific,Serotonin Plasma Membrane Transporter Proteins,5-Hydroxytryptamine Plasma Membrane Transport Protein,5HT Transporter,Platelet Serotonin Transporter,SERT Proteins,SLC6A4 Protein,Serotonectin,Serotonin Transporter,Serotonin Transporter, Platelets,Sodium-Dependent Serotonin Transporter,Solute Carrier Family 6, Member 4 Protein,5 Hydroxytryptamine Plasma Membrane Transport Protein,Neurotransmitter Transport Proteins, Serotonin Specific,Neurotransmitter Transporters, Serotonin Specific,Platelets Serotonin Transporter,Serotonin Transporter, Platelet,Serotonin Transporter, Sodium-Dependent,Serotonin-Specific Neurotransmitter Transporters,Sodium Dependent Serotonin Transporter,Transporter, Sodium-Dependent Serotonin
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D055879 Gene Knock-In Techniques Techniques used to add in exogenous gene sequence such as mutated genes; REPORTER GENES, to study mechanisms of gene expression; or regulatory control sequences, to study effects of temporal changes to GENE EXPRESSION. Gene Knock In,Gene Knock In Techniques,Gene Knock-In,Gene Knock Ins,Gene Knock-In Technique,Gene Knock-Ins,In, Gene Knock,Ins, Gene Knock,Knock In, Gene,Knock Ins, Gene,Knock-In Technique, Gene,Knock-In Techniques, Gene,Knock-In, Gene,Knock-Ins, Gene,Technique, Gene Knock-In,Techniques, Gene Knock-In
D060850 LIM-Homeodomain Proteins A subclass of LIM domain proteins that include an additional centrally-located homeodomain region that binds AT-rich sites on DNA. Many LIM-homeodomain proteins play a role as transcriptional regulators that direct cell fate. LIM-Homeodomain Protein,LIM Homeodomain Protein,LIM Homeodomain Proteins,Protein, LIM-Homeodomain

Related Publications

Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
January 2007, Digestion,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
February 2011, BMC neuroscience,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
May 2017, ACS chemical neuroscience,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
October 2013, BMC neuroscience,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
February 2005, Journal of neuroimmunology,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
June 2022, Gastroenterology,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
December 2008, Nutritional neuroscience,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
July 2006, Clinical and experimental pharmacology & physiology,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
February 2024, Neurochemistry international,
Luigi Michele Pavone, and Anna Spina, and Roberta Lo Muto, and Dionea Santoro, and Vincenzo Mastellone, and Luigi Avallone
December 2007, Anatomical record (Hoboken, N.J. : 2007),
Copied contents to your clipboard!