Effects of mannoheptulose and DL-glyceraldehyde on glucose induced insulin release and adenosine 3',5'-monophosphate levels in isoalted islets of rat pancreas. 1976

S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda

The effects of mannoheptulose and DL-glyceraldehyde on glucose-induced insulin release and cycli AMP levels in islets isolated from rat pancreas were investigated. Mannoheptulose inhibition on glucose-induced insulin release was observed after only 5-min incubation period, indicating an inhibitory effect on the early phase of insulin release. This inhibition on insulin release was accompanied with the simultaneous depression of cyclic AMP levels in islets. By the addition of DL-glyceraldehyde to the medium in which glucose and mannoheptulose were present, the depressed cyclic AMP levels in islets were recovered to the control level completely but the restoration of insulin release in the early phase was not complete. In the absence of glucose, DL-glyceraldehyde did not demonstrate a significant increase of insulin release during 5 min incubation, though a marked stimulation was observed after 30-min incubation. Cyclic AMP levels in islets were not affected by DL-glyceraldehyde. When DL-glyceraldehyde was added to the medium with glucose, significant inhibition of glucos-induced insulin release in its early phase was observed without the reduction of cyclic AMP levels in islets. From these findings, the following possibilities are suggested and discussed. 1. Maintenance of the cyclic AMP levels in islets is a necessary but insufficient condition for glucose-induced insulin release particularly for its early phase. 2. Glucose-induced insulin release seems to depend on both the binding of glucose with glucoreceptor and the supply of some metabolites. Mannoheptulose inhibits both mechanisms. DL-glyceraldehyde may supply metabolites but competitively inhibit the binding of glucose to the glucoreceptor.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D008356 Mannoheptulose A 7-carbon keto sugar having the mannose configuration. Mannoketoheptose
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005985 Glyceraldehyde An aldotriose containing the propionaldehyde structure with hydroxy groups at the 2- and 3-positions. It is involved in the formation of ADVANCED GLYCOSYLATION END PRODUCTS.
D006539 Heptoses
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda
February 1973, Science (New York, N.Y.),
S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda
April 1979, Endocrinology,
S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda
June 1978, Endocrinology,
S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda
July 1974, The Journal of biological chemistry,
S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda
December 1970, The Biochemical journal,
S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda
June 1966, Nature,
S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda
December 1971, The American journal of physiology,
S Suzuki, and H Oka, and H Yasuda, and T Kaneko, and K Yamashita, and T Oda
March 1971, The Biochemical journal,
Copied contents to your clipboard!