The structure of the mitochondrial cloud of Xenopus laevis oocytes. 1976

F S Billett, and E Adam

The ultrastructure of the mitochondrial cloud (Balbiani body) of the pre-vitellogenic oocytes of Xenopus laevis has been examined using transmission and stereoscan electron microscopy. Examination of conventional thin sections confirm previous observations which suggest that the cloud consists essentially of many thousands mitochondria and numerous small vesicles; larger clouds, in oocytes greater than 200 mum in diameter, contain relatively more vesicles. Using a standard electron microscope at 100 kV very long and coursing arrays of mitochondrial profiles can be detected. The presence of very long mitochondrial elements has been confirmed using a high voltage microscope operating at 500-1000 kV. Stereoscan preparations, isolated from pre-vitellogenic oocytes, lend some support to the view that the mitochondrial cloud amy consist of a mass of long filamentous mitochondria and the possibility that there are large continuous regions of mitochondrial material cannot be ruled out.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D002479 Inclusion Bodies A generic term for any circumscribed mass of foreign (e.g., lead or viruses) or metabolically inactive materials (e.g., ceroid or MALLORY BODIES), within the cytoplasm or nucleus of a cell. Inclusion bodies are in cells infected with certain filtrable viruses, observed especially in nerve, epithelial, or endothelial cells. (Stedman, 25th ed) Cellular Inclusions,Cytoplasmic Inclusions,Bodies, Inclusion,Body, Inclusion,Cellular Inclusion,Cytoplasmic Inclusion,Inclusion Body,Inclusion, Cellular,Inclusion, Cytoplasmic,Inclusions, Cellular,Inclusions, Cytoplasmic
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.

Related Publications

F S Billett, and E Adam
August 2012, Zygote (Cambridge, England),
F S Billett, and E Adam
April 1979, Biochemical and biophysical research communications,
F S Billett, and E Adam
January 2003, Methods in molecular biology (Clifton, N.J.),
F S Billett, and E Adam
January 2010, Methods in molecular biology (Clifton, N.J.),
F S Billett, and E Adam
January 1982, Progress in clinical and biological research,
F S Billett, and E Adam
October 1976, The Journal of biological chemistry,
F S Billett, and E Adam
October 1984, Developmental biology,
F S Billett, and E Adam
June 1974, Developmental biology,
F S Billett, and E Adam
February 2009, Journal of visualized experiments : JoVE,
Copied contents to your clipboard!