Growth, ribonucleotide reductase and metals in murine leukemic lymphocytes. 1991

M Oblender, and U Carpentieri
University of Texas Medical Branch, Department of Pediatrics, Galveston 77550.

Trace metals are essential for the growth and several other properties of human lymphocytes. We studied the effects of media with variable concentrations of three metals (Fe2+, Cu2+, Zn2+), a metal chelator (deferoxamine, DFX) and a cell-growth inhibitor (hydroxyurea) on the growth, intracellular metal concentration and activity of the enzyme ribonucleotide reductase in murine leukemic lymphocytes (L1210). Intracellular concentrations of Fe and Cu fluctuated within narrow limits in normal media, but decreased to very low concentrations in metal-poor media. The intracellular Zn concentration did not vary appreciably. Growth in intact cells decreased by 50%-70% when normal media were replaced by metal-poor media, but returned to control values when media were supplemented with gradually increasing concentrations of Fe and Cu. Fe and Cu had synergistic effects, while Zn had no stimulatory action. Hydroxyurea and DFX both inhibited cell growth, but only DFX inhibition was reversed by addition of metals. The addition of the above metals and inhibitors to the cell extracts produced effects on ribonucleotide reductase activity similar to those observed on the growth of whole cell preparations (stimulation by Fe and Cu, inhibition by Zn, DFX and hydroxyurea). These findings show that (a) the intracellular metal concentration is maintained in a narrow range during cell growth; (b) ribonucleotide reductase activity varies with cell growth; (c) ribonucleotide reductase activity and cell growth increase with Fe and Cu and decrease with Zn and DFX. Our data suggest that (a) Fe, Cu and Zn may have some effect on the growth and ribonucleotide reductase activity of L1210 cells, that (b) Fe, Cu and Zn may operate in a related and interdependent way and that (c) DFX inhibits cell growth probably through inhibition of the reductase activity and chelation of the Fe of its Fe-containing subunit. We conclude that any study on one of these metals should always include the other two and that manipulation of intracellular metals should be investigated as a potential therapeutic modulator of growth in leukemic lymphocytes.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007939 Leukemia L1210 An experimental LYMPHOCYTIC LEUKEMIA of mice. Leukemia L 1210,L 1210, Leukemia,L1210, Leukemia
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012264 Ribonucleotide Reductases Ribonucleotide Reductase,Reductase, Ribonucleotide,Reductases, Ribonucleotide

Related Publications

M Oblender, and U Carpentieri
November 1991, Cancer research,
M Oblender, and U Carpentieri
April 1970, The Journal of biological chemistry,
M Oblender, and U Carpentieri
January 1988, Anticancer research,
M Oblender, and U Carpentieri
January 1986, Cancer research,
M Oblender, and U Carpentieri
January 1983, Advances in inorganic biochemistry,
M Oblender, and U Carpentieri
January 1991, Journal of inherited metabolic disease,
M Oblender, and U Carpentieri
July 2019, Nature communications,
Copied contents to your clipboard!