Definitive erythropoiesis in chicken yolk sac. 2008

Hiroki Nagai, and Guojun Sheng
Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.

The first wave of erythropoiesis in amniotic animals generates all primitive erythrocytes and takes place exclusively in yolk sac mesoderm. It is less clear, however, to what extent and for how long the yolk sac contributes to the second wave of erythropoiesis which gives rise to definitive erythrocytes for later embryonic and adult use. Here, we examine the initiation, duration, and site of definitive erythrocyte formation in chicken yolk sac. We show that the earliest definitive erythrocytes are generated in yolk sac venous vessels surrounding major arteries at embryonic day (E) 4-4.5, and that mature definitive erythrocytes enter circulating at E4.5-E5. This takes place at a time when yolk sac vasculature remodels extensively to generate paired arterial/venous vessels. The yolk sac remains the predominant site for definitive erythropoiesis from E5 to E10, and continues to generate definitive erythrocytes at least until E15. Similar to primitive erythropoiesis, definitive erythropoiesis in the yolk sac is accompanied by the expression of transcriptional regulators gata1, scl, and lmo2. Furthermore, our data suggest that one main source of definitive erythropoietic cells is the pre-existing vascular endothelial cells. It remains unclear whether yolk sac derived hematopoietic progenitors that do not undergo erythropoiesis in the yolk sac may take up intraembryonic niches and contribute to erythropoietic stem cell population after hatching.

UI MeSH Term Description Entries
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D000650 Amnion The innermost membranous sac that surrounds and protects the developing embryo which is bathed in the AMNIOTIC FLUID. Amnion cells are secretory EPITHELIAL CELLS and contribute to the amniotic fluid. Amniotic Membrane,Amnions,Amniotic Membranes,Membrane, Amniotic,Membranes, Amniotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015017 Yolk Sac The first of four extra-embryonic membranes to form during EMBRYOGENESIS. In REPTILES and BIRDS, it arises from endoderm and mesoderm to incorporate the EGG YOLK into the DIGESTIVE TRACT for nourishing the embryo. In placental MAMMALS, its nutritional function is vestigial; however, it is the source of INTESTINAL MUCOSA; BLOOD CELLS; and GERM CELLS. It is sometimes called the vitelline sac, which should not be confused with the VITELLINE MEMBRANE of the egg. Vitelline Sac of Embryo,Embryo Vitelline Sac,Embryo Vitelline Sacs,Sac, Yolk,Sacs, Yolk,Yolk Sacs
D015672 Erythroid Precursor Cells The cells in the erythroid series derived from MYELOID PROGENITOR CELLS or from the bi-potential MEGAKARYOCYTE-ERYTHROID PROGENITOR CELLS which eventually give rise to mature RED BLOOD CELLS. The erythroid progenitor cells develop in two phases: erythroid burst-forming units (BFU-E) followed by erythroid colony-forming units (CFU-E); BFU-E differentiate into CFU-E on stimulation by ERYTHROPOIETIN, and then further differentiate into ERYTHROBLASTS when stimulated by other factors. Burst-Forming Units, Erythroid,Colony-Forming Units, Erythroid,Erythroid Progenitor Cells,Erythropoietic Progenitor Cells,Erythropoietic Stem Cells,Progenitor Cells, Erythropoietic,Stem Cells, Erythroid,BFU-E,CFU-E,BFU E,BFU-Es,Burst Forming Units, Erythroid,Burst-Forming Unit, Erythroid,CFU E,CFU-Es,Cell, Erythroid Precursor,Cell, Erythroid Progenitor,Cell, Erythroid Stem,Cell, Erythropoietic Progenitor,Cell, Erythropoietic Stem,Cells, Erythroid Precursor,Cells, Erythroid Progenitor,Cells, Erythroid Stem,Cells, Erythropoietic Progenitor,Cells, Erythropoietic Stem,Colony Forming Units, Erythroid,Colony-Forming Unit, Erythroid,Erythroid Burst-Forming Unit,Erythroid Burst-Forming Units,Erythroid Colony-Forming Unit,Erythroid Colony-Forming Units,Erythroid Precursor Cell,Erythroid Progenitor Cell,Erythroid Stem Cell,Erythroid Stem Cells,Erythropoietic Progenitor Cell,Erythropoietic Stem Cell,Precursor Cell, Erythroid,Precursor Cells, Erythroid,Progenitor Cell, Erythroid,Progenitor Cell, Erythropoietic,Progenitor Cells, Erythroid,Stem Cell, Erythroid,Stem Cell, Erythropoietic,Stem Cells, Erythropoietic,Unit, Erythroid Burst-Forming,Unit, Erythroid Colony-Forming,Units, Erythroid Burst-Forming,Units, Erythroid Colony-Forming
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D050982 GATA1 Transcription Factor A GATA transcription factor that is specifically expressed in hematopoietic lineages and plays an important role in the CELL DIFFERENTIATION of ERYTHROID CELLS and MEGAKARYOCYTES. Eryf1 Erythroid-Specific Transcription Factor,Erythroid Transcription Factor 1,Globin Transcription Factor 1,NF-E1 Erythroid-Specific Transcription Factor,Nuclear Factor-Erythroid 1,Transcription Factor GATA1,Transcription Factor NFE-1,Eryf1 Erythroid Specific Transcription Factor,Factor GATA1, Transcription,GATA1, Transcription Factor,NF E1 Erythroid Specific Transcription Factor,NFE-1, Transcription Factor,Nuclear Factor Erythroid 1,Transcription Factor, GATA1
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Hiroki Nagai, and Guojun Sheng
March 1978, Experientia,
Hiroki Nagai, and Guojun Sheng
January 2010, The International journal of developmental biology,
Hiroki Nagai, and Guojun Sheng
January 2008, Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia,
Hiroki Nagai, and Guojun Sheng
July 1972, Science (New York, N.Y.),
Hiroki Nagai, and Guojun Sheng
April 1966, The Anatomical record,
Hiroki Nagai, and Guojun Sheng
December 1978, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
Hiroki Nagai, and Guojun Sheng
July 2016, Theriogenology,
Hiroki Nagai, and Guojun Sheng
October 2019, Cell death & disease,
Copied contents to your clipboard!