Nerve growth factor, sphingomyelins, and sensitization in sensory neurons. 2008

Grant D Nicol
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. gnicol@iupui.edu

Because nerve growth factor (NGF) is elevated during inflammation, plays a causal role in the initiation of hyperalgesia, and is known to activate the sphingomyelin signalling pathway, we examined whether NGF and its putative second messenger, ceramide, could modulate the excitability of capsaicin-sensitive adult sensory neurons. Using the whole-cell patch-clamp recording technique, exposure of isolated sensory neurons to either 100 ng/mL NGF or 1 mmol/L N-acetyl sphingosine (C2-ceramide) produced a 3-4 fold increase in the number of action potentials (APs) evoked by a ramp of depolarizing current in a time-dependent manner. Intracellular perfusion with bacterial sphingomyelinase (SMase) also increased the number of APs suggesting that the release of native ceramide enhanced neuronal excitability. Glutathione, an inhibitor of neutral SMase, completely blocked the NGF-induced augmentation of AP firing, whereas dithiothreitol, an inhibitor of acidic SMase, was without effect. In the presence of glutathione and NGF, exogenous ceramide still enhanced the number of evoked APs, indicating that the sensitizing action of ceramide was downstream of NGF. To investigate the mechanisms of actions for NGF and ceramide, isolated membrane currents were examined. Both NGF and ceramide facilitated the peak amplitude of the TTX-resistant sodium current (TTX-R I(Na)) by approximately 1.5-fold and shifted the activation to more hyperpolarized voltages. In addition, NGF and ceramide suppressed an outward potassium current (I(K)) by ~35%. The inflammatory prostaglandin, PGE2, produced an additional suppression of I(K) after exposure to ceramide (~35%), suggesting that these agents might act on different targets. Based on the existing literature, it is not clear whether this NGF-induced sensitization is mediated by the high-affinity TrkA receptor or the low-affinity p75 neurotrophin receptor. Pretreatment with the p75 blocking antibody completely prevents the NGF-induced increase in the number of APs evoked by the current ramp. Although the sensitization by NGF was blocked, the antibody had no effect on the capacity of ceramide, a putative downstream signalling molecule, to enhance the excitability. Ceramide can be metabolized by ceramidase to sphingosine (Sph) and Sph to sphingosine 1-phosphate (S1P) by sphingosine kinase. It is well established that each of these products of sphingomyelin metabolism can act as intracellular signalling molecules. This raises the question as to whether the enhanced excitability produced by NGF was mediated directly by ceramide or required additional metabolism to Sph and/or S1P. Sph applied externally did not affect the neuronal excitability whereas internally perfused Sph augmented the number of APs evoked by the depolarizing ramp. Furthermore, internally perfused S1P enhanced the number of evoked APs. This sensitizing action of NGF, ceramide, and internally perfused Sph, were abolished by dimethylsphingosine (DMS), an inhibitor of sphingosine kinase. In contrast, internally perfused S1P enhanced the number of evoked APs in the presence of DMS. These observations support the idea that the metabolism of ceramide/Sph to S1P is critical for the sphingolipid-induced modulation of excitability. Thus, our findings indicate that the pro-inflammatory agent, NGF, can rapidly enhance the excitability of sensory neurons. This NGF-induced sensitization is mediated by activation of the sphingomyelin signalling pathway wherein intracellular S1P derived from ceramide, acts as an internal second messenger to regulate membrane excitability, however, the effector system whereby S1P modulates excitability remains undetermined.

UI MeSH Term Description Entries
D008246 Lysophospholipids Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal. Lysophosphatidic Acids,Lysophospholipid,Acids, Lysophosphatidic
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002518 Ceramides Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE. Ceramide
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013109 Sphingomyelins A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS. Sphingomyelin
D013110 Sphingosine An amino alcohol with a long unsaturated hydrocarbon chain. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. (Dorland, 28th ed) 4-Sphingenine,4 Sphingenine
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017853 Phosphotransferases (Alcohol Group Acceptor) A group of enzymes that transfers a phosphate group onto an alcohol group acceptor. EC 2.7.1.

Related Publications

Grant D Nicol
March 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Grant D Nicol
May 2001, Journal of neurochemistry,
Grant D Nicol
January 1984, Zeitschrift fur mikroskopisch-anatomische Forschung,
Grant D Nicol
March 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!