Molecular genetic approaches to defining lipid function. 2009

William Dowhan
Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA. William.Dowhan@uth.tmc.edu

Lipids fulfill multiple and diverse functions in cells. Establishing the molecular basis for these functions has been challenging due to the lack of catalytic activity of lipids and the pleiotropic effects of mutations that affect lipid composition. By combining molecular genetic manipulation of membrane lipid composition with biochemical characterization of the resulting phenotypes, the molecular details of novel lipid functions have been established. This review summarizes the results of such a combined approach to defining lipid function in bacteria.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid

Related Publications

William Dowhan
June 1996, Trends in neurosciences,
William Dowhan
October 2000, Histology and histopathology,
William Dowhan
January 1992, Annual review of cell biology,
William Dowhan
January 1989, Progress in clinical and biological research,
William Dowhan
October 2016, Microbiology spectrum,
William Dowhan
April 1989, Trends in neurosciences,
William Dowhan
January 2017, Advances in experimental medicine and biology,
Copied contents to your clipboard!