Differentiation of monocyte-derived dendritic cells under the influence of platelets. 2008

X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Red-Cross Blood Donation Service of Baden-Wurttemberg-Hessen, Germany. x.nguyen@blutspende.de

BACKGROUND Monocytapheresis has been established to collect a sufficient number of monocytes (MO) for differentiation to dendritic cells (DC) as a cancer vaccine. Platelets (Plt) are invariably found as a contaminant in the final monocytapheresis product. The aim of this study was to investigate DC differentiation under the influence of Plt with regard to their function and phenotype. METHODS MO were isolated and co-cultured with autologous Plt at different MO:Plt ratios (1:1.7, 1:5, 1:15, 1:45 and 1:135) in the presence of interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF). IL-12p70 release after ligation of CD40L was determined in the supernatant by enzyme-linked immunosorbent assay (ELISA). For T-cell stimulation, tetanus toxoid was added to immature DC and maturation was induced by adding cytokines (IL-1beta, IL-6, tumor necrosis factor-alpha and prostaglandin E(2)). Stimulated T cells were analyzed for activation and proliferation as well as for intracellular cytokines by flow cytometry. RESULTS All DC cultures were strongly positive for CD83. At a contaminating concentration of 5 Plt/MO, matured DC showed the highest expression of HLA-DR, CD80 and CD86, inducing a strong T-cell proliferation with high production of IL-4 and interferon-gamma. The highest level of IL-12p70 production was observed by the same DC group. CONCLUSIONS Plt did not negatively influence DC maturation but enhanced the expression of co-stimulatory molecules and the release of IL-12. Functionally this was reflected by a strong T-cell response that involved T-helper 1 (Th1)- as well as Th2-biased T cells. Our findings show that controlling the Plt concentration may provide important advantages for the generation of DC for use in immunotherapy.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D016130 Immunophenotyping Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry. Lymphocyte Immunophenotyping,Lymphocyte Subtyping,Immunologic Subtyping,Immunologic Subtypings,Lymphocyte Phenotyping,Subtyping, Immunologic,Subtypings, Immunologic,Immunophenotyping, Lymphocyte,Immunophenotypings,Immunophenotypings, Lymphocyte,Lymphocyte Immunophenotypings,Lymphocyte Phenotypings,Lymphocyte Subtypings,Phenotyping, Lymphocyte,Phenotypings, Lymphocyte,Subtyping, Lymphocyte,Subtypings, Lymphocyte
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
August 2005, Seminars in immunology,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
March 2017, Immunology and cell biology,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
January 2008, Cellular immunology,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
May 2014, EMBO molecular medicine,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
December 2015, Inflammation,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
February 2006, International immunopharmacology,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
January 2003, International journal of immunopathology and pharmacology,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
May 2005, Blood,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
January 2013, PloS one,
X D Nguyen, and J Müller-Berghaus, and T Kälsch, and D Schadendorf, and M Borggrefe, and H Klüter
January 2011, Cellular immunology,
Copied contents to your clipboard!