Natural killer cell-dependent mycobacteriostatic and mycobactericidal activity in human macrophages. 1991

L E Bermudez, and L S Young
Kuzell Institute for Arthritis and Infectious Diseases, Pacific Presbyterian Medical Center, San Francisco, CA 94115.

Host defense mechanisms against Mycobacterium avium complex (MAC) are poorly understood. Recent evidence suggests the role of NK cells in the host defense against some intracellular pathogens. We investigated whether NK cells play a role in MAC infection. IL-2-activated human NK cells were incubated with human monocyte-derived macrophages either before or after infection with MAC. Macrophages were lysed 3 and 5 days after infection for quantitation of viable intracellular organisms. Although no killing was observed by nonstimulated macrophages, exposure to IL-2-treated NK cells for 24 h before infection induced macrophage to kill 70 +/- 8% of intracellular MAC by 3 days, and 81% +/- 4% in 5 days (p less than 0.01 for both compared with control). Killing was not blocked by incubation with anti-TNF antibody (Ab) or anti-IFN-gamma Ab. Similarly, incubation of macrophages for 24 h with supernatant obtained from IL-2 activated NK cells was associated with 74 +/- 4% killing of intracellular MAC in 3 days and 81 +/- 6% in 5 days (p less than 0.01 for both compared with control). However, the supernatant-mediated activation was partially blocked by anti-TNF Ab (46 +/- 6%; p less than 0.05) but not by anti-IFN gamma Ab. When infected macrophages were incubated with NK cells 24 h after infection for 48 h, they killed 54 +/- 3% of intracellular M. avium in 3 days and 73 +/- 5% in 5 days (p less than 0.02 for both compared with control). This effect was also not blocked by either anti-TNF or anti-IFN gamma Ab. These results suggest that activated NK cells may have an important role in the intracellular killing of MAC and that the NK-mediated activation of macrophages is in part mediated by TNF.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D015269 Mycobacterium avium Complex A complex that includes several strains of M. avium. M. intracellulare is not easily distinguished from M. avium and therefore is included in the complex. These organisms are most frequently found in pulmonary secretions from persons with a tuberculous-like mycobacteriosis. Strains of this complex have also been associated with childhood lymphadenitis and AIDS; M. avium alone causes tuberculosis in a variety of birds and other animals, including pigs. Battey Bacillus,MAIC,Mycobacterium avium-intracellulare,Mycobacterium avium-intracellulare Complex,Mycobacterium intracellulare,Nocardia intracellularis
D015270 Mycobacterium avium-intracellulare Infection A nontuberculous infection when occurring in humans. It is characterized by pulmonary disease, lymphadenitis in children, and systemic disease in AIDS patients. Mycobacterium avium-intracellulare infection of birds and swine results in tuberculosis. Mycobacterium intracellulare Infection,Infection, Mycobacterium avium-intracellulare,Infection, Mycobacterium intracellulare,Mycobacterium avium intracellulare Infection,Infection, Mycobacterium avium intracellulare,Infections, Mycobacterium avium-intracellulare,Infections, Mycobacterium intracellulare,Mycobacterium avium-intracellulare Infections,Mycobacterium intracellulare Infections

Related Publications

L E Bermudez, and L S Young
March 1998, The Journal of infectious diseases,
L E Bermudez, and L S Young
July 1986, The American review of respiratory disease,
L E Bermudez, and L S Young
December 1985, Shi yan sheng wu xue bao,
L E Bermudez, and L S Young
August 1982, Infection and immunity,
L E Bermudez, and L S Young
September 1988, Biochemical and biophysical research communications,
L E Bermudez, and L S Young
August 1982, Journal of immunology (Baltimore, Md. : 1950),
L E Bermudez, and L S Young
January 1979, International archives of allergy and applied immunology,
L E Bermudez, and L S Young
January 1987, Bollettino dell'Istituto sieroterapico milanese,
Copied contents to your clipboard!