Modulation of a cloned mouse brain potassium channel. 1991

J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.

The mouse brain K+ channel (MBK), previously cloned by others, has been independently cloned and shown to express in Xenopus oocytes. This K+ current (IK) inactivated over a time course of seconds and was sensitive to the K+ channel-blocking reagent tetraethylammonium. When the K+ channel was coexpressed with a cloned mouse brain serotonin receptor (5HT1c) in oocytes, activation of the 5HT1c receptor by a brief application of serotonin resulted in a suppression of the IK amplitude over the next 20 min. IK could also be suppressed by activation of G proteins. Suppression was also caused by intracellular Ca2+ injections and was blocked by intracellular injection of EGTA. Calmodulin antagonists block the IK suppression, but a known protein kinase inhibitor did not block suppression. The 5HT1c suppression was reversible; recovery from suppression was blocked by the protein kinase inhibitor H-7. These data suggest that the IK suppression occurs through a novel mechanism independent of A- or C-type protein kinases; suppression is best explained as being due to the action of a Ca2+/calmodulin-activated phosphatase; recovery from suppression is due to the action of a protein kinase.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009712 Nucleotides, Cyclic Cyclic Nucleotide,Cyclic Nucleotides,Nucleotide, Cyclic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
September 1994, Pflugers Archiv : European journal of physiology,
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
January 1996, Neuropharmacology,
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
January 1996, Neuropharmacology,
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
April 1989, Science (New York, N.Y.),
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
June 1994, The Journal of physiology,
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
October 1994, The Journal of membrane biology,
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
April 1988, Nature,
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
September 1995, Journal of molecular and cellular cardiology,
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
July 1993, British journal of pharmacology,
J H Hoger, and A E Walter, and D Vance, and L Yu, and H A Lester, and N Davidson
September 2000, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!