Subcellular localization of N-acetylglucosaminide beta 1----4 galactosyltransferase revealed by immunoelectron microscopy. 1991

T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
Department of Anatomy, Faculty of Medicine, Kagoshima University, Japan.

We prepared a monoclonal antibody (MAb) against N-acetylglucosaminide beta 1----4 galactosyltransferase purified from F9 embryonal carcinoma cells. The MAb recognized the protein portion of the enzyme, since it inhibited galactosyltransferase activity, reacted with the enzyme both from F9 cells and from bovine milk, and did not exhibit anti-carbohydrate activity. Using this MAb, we studied the subcellular localization of the enzyme by immunoelectron microscopy. Intense staining was observed in trans-Golgi stacks within testicular interstitial cells and mucous neck cells, confirming the specificity of the immunological reaction. Cell surface galactosyltransferase was detected in the following regions: cultured cells such as F9 embryonal carcinoma cells, testicular interstitial cells, seminiferous tubule epithelial cells, Sertoli cells, the head of the epididymal sperm, epididymal epithelial cells, and apical surfaces of epithelial cells in the fundic gland and of intestinal goblet cells. The use of Triton X-100 intensified the cell surface immunoreactivity, and in certain cases the mode of distribution of the cell surface enzyme was different from that described in previous reports. In addition, nuclear envelopes of cultured cells were distinctly stained. The possible significance of the latter finding is discussed in relation to recent advances in nuclear localization of glycoproteins.

UI MeSH Term Description Entries
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D008297 Male Males
D009237 N-Acetyllactosamine Synthase The A protein of the lactose synthase complex. In the presence of the B protein (LACTALBUMIN) specificity is changed from N-acetylglucosamine to glucose. EC 2.4.1.90. N-Acetyllactosamine Synthetase,UDP Galactose Acetylglucosamine Galactosyltransferase,N-Acetylglucosamine beta-D-Galactosyltransferase,UDP Galactose-N-Acetylglucosamine Galactosyltransferase,beta-1,4-Galactosyltransferase,Galactosyltransferase, UDP Galactose-N-Acetylglucosamine,N Acetylglucosamine beta D Galactosyltransferase,N Acetyllactosamine Synthase,N Acetyllactosamine Synthetase,Synthase, N-Acetyllactosamine,Synthetase, N-Acetyllactosamine,UDP Galactose N Acetylglucosamine Galactosyltransferase,beta 1,4 Galactosyltransferase,beta-D-Galactosyltransferase, N-Acetylglucosamine
D009685 Nuclear Envelope The membrane system of the CELL NUCLEUS that surrounds the nucleoplasm. It consists of two concentric membranes separated by the perinuclear space. The structures of the envelope where it opens to the cytoplasm are called the nuclear pores (NUCLEAR PORE). Nuclear Membrane,Envelope, Nuclear,Envelopes, Nuclear,Membrane, Nuclear,Membranes, Nuclear,Nuclear Envelopes,Nuclear Membranes
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
October 1991, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
December 1988, Biochemical and biophysical research communications,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
July 2012, Histochemistry and cell biology,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
April 1998, The Journal of biological chemistry,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
March 2004, Planta,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
March 1984, FEBS letters,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
November 1979, The Journal of cell biology,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
October 1995, Investigative ophthalmology & visual science,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
January 2017, Biochemistry. Biokhimiia,
T Suganuma, and H Muramatsu, and T Muramatsu, and K Ihida, and J Kawano, and F Murata
December 1984, The Journal of biological chemistry,
Copied contents to your clipboard!