PPARdelta agonism inhibits skeletal muscle PDC activity, mitochondrial ATP production and force generation during prolonged contraction. 2009

Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
Centre for Integrated Systems Biology and Medicine, Queens Medical Centre, University of Nottingham Medical School, Nottingham NG7 2UH, UK. tim.constantin@nottingham.ac.uk.

We have recently shown that PPARdelta agonism, used clinically to treat insulin resistance, increases fat oxidation and up-regulates mitochondrial PDK4 mRNA and protein expression in resting skeletal muscle. We hypothesized that PDK4 up-regulation, which inhibits pyruvate dehydrogenase complex (PDC)-dependent carbohydrate (CHO) oxidation, would negatively affect muscle function during sustained contraction where the demand on CHO is markedly increased. Three groups of eight male Wistar rats each received either vehicle or a PPARdelta agonist (GW610742X) at two doses (5 and 100 mg (kg body mass (bm))(-1) orally for 6 days. On the seventh day, the gastrocnemius-soleus-plantaris muscle group was isolated and snap frozen, or underwent 30 min of electrically evoked submaximal intensity isometric contraction using a perfused hindlimb model. During contraction, the rate of muscle PDC activation was significantly lower at 100 mg (kg bm)(-1) compared with control (P < 0.01). Furthermore, the rates of muscle PCr hydrolysis and lactate accumulation were significantly increased at 100 mg (kg bm)(-1) compared with control, reflecting lower mitochondrial ATP generation. Muscle tension development during contraction was significantly lower at 100 mg (kg bm)(-1) compared with control (25%; P < 0.05). The present data demonstrate that PPARdelta agonism inhibits muscle CHO oxidation at the level of PDC during prolonged contraction, and is paralleled by the activation of anaerobic metabolism, which collectively impair contractile function.

UI MeSH Term Description Entries
D008297 Male Males
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013844 Thiazoles Heterocyclic compounds where the ring system is composed of three CARBON atoms, a SULFUR and NITROGEN atoms. Thiazole

Related Publications

Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
April 1993, Journal of applied physiology (Bethesda, Md. : 1985),
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
December 1992, Journal of applied physiology (Bethesda, Md. : 1985),
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
May 1980, Journal of theoretical biology,
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
December 1996, The Journal of experimental biology,
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
May 1986, The Journal of physiology,
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
June 2005, Biophysical journal,
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
July 2001, American journal of physiology. Regulatory, integrative and comparative physiology,
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
July 1978, The American journal of physiology,
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
January 2020, International journal for numerical methods in biomedical engineering,
Dumitru Constantin-Teodosiu, and David J Baker, and Despina Constantin, and Paul L Greenhaff
July 2011, Biophysical journal,
Copied contents to your clipboard!