2-Deoxy-D-galactose metabolism in ascites hepatoma cells results in phosphate trapping and glycolysis inhibition. 1977

D F Smith, and D O Keppler

The metabolism of 2-deoxy-D-galactose has been studied in AS-30D rat ascites hepatoma cells in suspension. Using 2-deoxy-D-(1-14C)galactose and an alkaline ethanol deproteinization procedure, the quantitatively identified metabolites included 2-deoxy-D-galactose 1-phosphate comprising 99.3%, and UDP-2-deoxy-D-galactose and UDP-2-deoxy-D-glucose, together amounting to 0.4% of the total metabolites. After incubation for 5 h in the presence of 2-deoxy-D-galactose (1 mmo1/1), the content of 2-deoxy-D-galactose 1-phosphate reached 35 mmo1x(kg cells)-1. The rate of phosphorylation of 2-deoxy-D-galactose was rapid during the first 30 min and decreased to approximately 20% of this rate during the subsequent hours. The rapid trapping of Pi in the form of 2-deoxy-D-galactose 1-phosphate resulted in a depression of free intracellular Pi in spite of a concomitant increase in net 32Pi uptake from the medium and a decrease of ATP and other 5'-nucleotides. The rates of glucose utilization and lactate production were depressed by more than 80% in the presence of 2-deoxy-D-galactose (1 mmo1/1). Interruption of Pi trapping by removal of 2-deoxy-D-galactose from the medium reversed the depressions of Pi and ATP and resulted in a rapid but incomplete relief of glycolysis inhibition. Crossover analysis of glycolytic intermediates indicated an inhibition at the 6-phosphofructokinase step. The depression of glucose utilization may be mediated by the increased level of glucose 6-phosphate, a potent inhibitor of hexokinase. An additional inhibitory effect of a metabolite of 2-deoxy-D-galactose at the 6-phosphofructokinase step was indicated by crossover analysis after reversal of Pi and ATP depressions in the presence of a high intracellular content of 2-deoxy-D-glactose 1-phosphate. The quantitative analysis of the metabolites of 2-deoxy-D-galactose demonstrated the predominance of the monophosphate and the negligible formation of UPD derivatives of this sugar analog in AS-30D hepatoma cells. This provides a system for the investigation of a galactose analog as a phosphate-trapping agent in the virtual absence of uridylate trapping.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D005260 Female Females
D005643 Fucose A six-member ring deoxysugar with the chemical formula C6H12O5. It lacks a hydroxyl group on the carbon at position 6 of the molecule. Deoxygalactose,alpha-Fucose,alpha Fucose
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D006600 Hexosephosphates
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

D F Smith, and D O Keppler
November 1977, European journal of biochemistry,
D F Smith, and D O Keppler
April 1972, Biochimica et biophysica acta,
D F Smith, and D O Keppler
January 1988, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology,
D F Smith, and D O Keppler
May 1990, European journal of biochemistry,
D F Smith, and D O Keppler
June 1979, Virchows Archiv. B, Cell pathology including molecular pathology,
D F Smith, and D O Keppler
October 2011, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
D F Smith, and D O Keppler
August 1992, The Biochemical journal,
D F Smith, and D O Keppler
November 1968, Biochimica et biophysica acta,
Copied contents to your clipboard!