An Approach to Further Enhance the Cellular Productivity of Exogenous Protein Hyper-producing Chinese Hamster Ovary (CHO) Cells. 2005

Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan, kteruya@grt.kyushu-u.ac.jp.

The cell line D29, which was easily and rapidly established by the promoter-activated production and glutamine synthetase hybrid system, secreted recombinant human interleukin-6 (hIL-6) at a productivity rate of 39.5 mug 10(-6) cells day(-1), one of the highest reported levels worldwide. The productivity rate was about 130-fold higher than that of the cell line A7, which was established without both promoter activation and gene amplification. Although D29 cells had a high copy number and high mRNA level of the hIL-6 gene as well as a high secretion rate of hIL-6, large amounts of intracellular hIL-6 protein accumulated in D29 cells compared to A7 cells. Northern blotting analysis showed no change in the GRP78/BiP expression level in D29 cells. In contrast, an electrophoresis mobility shift assay revealed strong activation of NF-kappaB in D29 cells. These results suggest that large amounts of hIL-6 translated from large amounts of hIL-6 mRNA cause excess accumulation of intact hIL-6 in the endoplasmic reticulum (ER), and that subsequent negative feedback signals via the ER overload response inhibit hIL-6 protein secretion. To enhance the hIL-6 productivity rate of D29 cells by releasing the negative feedback signals, the effect of pyrrolidinedithiocarbamate, an inhibitor of NF-kappaB activation, was examined. Suppression of NF-kappaB activation in D29 cells produced a 25% augmentation of the hIL-6 productivity rate. Therefore, in highly productive cells like D29 cells, the release of negative feedback signals could increase the total amount of recombinant protein secretion.

UI MeSH Term Description Entries

Related Publications

Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
November 2021, Metabolites,
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
January 2004, Methods in molecular biology (Clifton, N.J.),
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
April 2010, Current pharmaceutical biotechnology,
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
January 1978, Mutation research,
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
January 2001, Journal of bioscience and bioengineering,
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
February 2016, Cellular and molecular biology (Noisy-le-Grand, France),
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
October 2023, Biomedicines,
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
May 2008, Biochemical and biophysical research communications,
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
August 1994, FEBS letters,
Kiichiro Teruya, and Yoshihito Daimon, and Xiao-Yan Dong, and Yoshinori Katakura, and Takumi Miura, and Akira Ichikawa, and Tsukasa Fujiki, and Makiko Yamashita, and Tetsuya Mori, and Hideya Ohashi, and Sanetaka Shirahata
April 1988, Mutation research,
Copied contents to your clipboard!