Impaired activation of skeletal muscle glycogen synthase in non-insulin-dependent diabetes mellitus is unrelated to the degree of obesity. 1991

A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
Department of Medicine, University of Newcastle upon Tyne, UK.

Twenty-five newly presenting, untreated, white, non-insulin-dependent diabetic (NIDDM) subjects were studied within 72 hours of diagnosis. They were allocated to three groups according to their body mass index [BMI] (lean BMI less than 25.0, n = 9; overweight BMI 25.0 to 30.0, n = 6; obese BMI greater than .30.0 kg/m2, n = 10). All three groups exhibited equivalent hyperglycemia. Eleven normal control subjects were also studied. The degree of activation of skeletal muscle glycogen synthase (GS) was used as an intracellular marker of insulin action, before and during a 240-minute insulin infusion (100 mU/kg/h). Fractional GS activity did not increase in the lean (change, -0.9 +/- 3.3%), the overweight (-1.9 +/- 2.7%), or the obese (+2.2 +/- 1.6%) NIDDM subjects during the insulin infusion and was markedly decreased compared with the control subjects (change, +14.6 +/- 2.4%, all P less than .001). Glucose requirement was also significantly decreased in all three NIDDM groups (103 +/- 23 v 81 +/- 14 v 53 +/- 14 mg/m2/min, respectively) compared with the control subjects (319 +/- 18 mg/m2/min, all P less than .001). There was a significant negative correlation with BMI (r = -.51, P less than .01), but the difference in glucose requirement between the lean and obese NIDDM groups was not significant. Muscle GS activity at the end of the euglycemic clamp correlated with glucose requirement (r = .53, P less than .001), and a similar correlation was observed between the insulin-induced change in muscle GS activity from basal and glucose requirement (r = .47, P less than .005).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D002096 C-Peptide The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin. Proinsulin C-Peptide,C-Peptide, Proinsulin,Connecting Peptide,C Peptide,C Peptide, Proinsulin,Proinsulin C Peptide
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005260 Female Females

Related Publications

A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
November 1990, Metabolism: clinical and experimental,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
March 1992, The Journal of clinical investigation,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
May 1995, Nihon Naibunpi Gakkai zasshi,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
September 1996, The Journal of clinical investigation,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
February 1991, The Journal of clinical investigation,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
September 1991, The American journal of clinical nutrition,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
June 1993, The Journal of clinical investigation,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
January 1994, Journal of diabetes and its complications,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
December 1994, The Journal of clinical investigation,
A B Johnson, and M Argyraki, and J C Thow, and I R Jones, and D Broughton, and M Miller, and R Taylor
May 1993, The New England journal of medicine,
Copied contents to your clipboard!