The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. 1991

D Ben-Shachar, and G Eshel, and J P Finberg, and M B Youdim
Rappaport Family Research Institute, Faculty of Medicine, Technion, Haifa, Israel.

A selective increase in content of iron in the pars compacta of the substantia nigra has been implicated in the biochemical pathology of Parkinson's disease. Iron is thought to induce oxidative stress by liberation of oxygen free radicals from H2O2. Because 6-hydroxydopamine (6-OHDA) is thought to induce nigrostriatal dopaminergic neuronal lesions via metal-catalyzed free radical formation, the effect of the iron chelator desferrioxamine was investigated on 6-OHDA-induced dopaminergic neuron degeneration in the rat. Intracerebroventricular injection of 6-OHDA (250 micrograms) caused a 88, 79, and 70% reduction in striatal tissue content of dopamine (DA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid (HVA), respectively, and a 2.5-fold increase in DA release as indicated by the HVA/DA ratio. Prior injection of desferrioxamine (130 ng i.c.v.) resulted in a significant protection (approximately 60%) against the 6-OHDA-induced reduction in striatal DA content and a normalization of DA release. Dopaminergic-related behavioral responses, such as spontaneous movements in a novel environment and rearing, were significantly impaired in the 6-OHDA-treated group. By contrast, the desferrioxamine-pretreated rats exhibited almost normal behavioral responses. The ability of iron chelators to retard dopaminergic neurodegeneration in the substantia nigra may indicate a new therapeutic strategy in the treatment of Parkinson's disease.

UI MeSH Term Description Entries
D007502 Iron Chelating Agents Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems. Iron Chelates,Agents, Iron Chelating,Chelates, Iron,Chelating Agents, Iron
D008297 Male Males
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006719 Homovanillic Acid A 3-O-methyl ETHER of (3,4-dihydroxyphenyl)acetic acid. 3-Methoxy-4-Hydroxyphenylacetic Acid,4-Hydroxy-3-Methoxyphenylacetic Acid,3 Methoxy 4 Hydroxyphenylacetic Acid,4 Hydroxy 3 Methoxyphenylacetic Acid,Acid, 3-Methoxy-4-Hydroxyphenylacetic,Acid, 4-Hydroxy-3-Methoxyphenylacetic,Acid, Homovanillic
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine

Related Publications

D Ben-Shachar, and G Eshel, and J P Finberg, and M B Youdim
January 1976, Pharmacology & therapeutics. Part B: General & systematic pharmacology,
D Ben-Shachar, and G Eshel, and J P Finberg, and M B Youdim
February 2012, Molecular medicine reports,
D Ben-Shachar, and G Eshel, and J P Finberg, and M B Youdim
February 1991, Brain research bulletin,
D Ben-Shachar, and G Eshel, and J P Finberg, and M B Youdim
April 1992, Brain research bulletin,
D Ben-Shachar, and G Eshel, and J P Finberg, and M B Youdim
December 1976, Experimental neurology,
D Ben-Shachar, and G Eshel, and J P Finberg, and M B Youdim
January 1974, Advances in neurology,
D Ben-Shachar, and G Eshel, and J P Finberg, and M B Youdim
February 1977, Brain research,
Copied contents to your clipboard!