The role of IL-4 in proliferation and differentiation of human natural killer cells. Study of an IL-4-dependent versus an IL-2-dependent natural killer cell clone. 1991

K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston 77030.

The role of IL-4 in proliferation and differentiation of human NK cells was studied using newly established sublines of an IL-4-dependent NK cell clone (IL4d-NK cells) and an IL-2-dependent NK cell clone (IL2d-NK cells) derived from a parental conditioned medium-dependent NK cell clone (CM-NK cells). IL-4 induced the higher proliferation of CM-NK cells, but abolished their NK activity and decreased CD16 and CD56 Ag expression. In contrast, IL-2 induced the higher NK activity and increased CD16 and CD56 Ag expression. Addition of anti-IL-4 antibody to the culture of CM-NK cells with CM inhibited the proliferation, but slightly increased NK activity, and largely increased CD56 Ag expression. Addition of anti-IL-2 antibody to the culture of CM-NK cells with CM inhibited both proliferation and cytotoxicity. Proliferation of IL4d-NK cells, which is totally dependent on rIL-4, is greater than that of IL2d-NK cells, which was greater than parental CM-NK cells. Morphologically, IL4d-NK cells are small and round, whereas IL2d-NK cells are large and elongated. Anti-IL-4 antibody inhibited proliferation of IL4d-NK but not IL2d-NK cells, whereas anti-IL-2 antibody inhibited that of IL2d-NK but not IL4d-NK cells. IL-2 was not detected in the supernatant from IL4d-NK cells, nor was IL-2-mRNA expressed in IL4d-NK cells. In contrast, IFN-gamma production and protein expression in IL4d- and IL2d-NK cells were detected. NK cell activation markers (CD16 and CD56) were expressed on IL2d-NK cells but not IL4d-NK cells. IL4d-NK cells were not cytotoxic to any tumor cells tested, whereas IL2d-NK cells displayed potent NK activity and lymphokine-activated killer activity. IL4d-NK cells failed to bind K562 tumor cells, whereas one-third of the IL2d-NK cells did. IL4d-NK cells responded to rIL-2, proliferated, and differentiated into cytotoxic NK cells, whereas IL2d-NK cells failed to respond to rIL-4 and died. These results raise a possibility that IL4d-NK cells or IL2d-NK cells primarily represent the immunologic properties of immature or activated types of human NK cells, respectively. Our results provide the first evidence of the capability of IL-4 to support continuous proliferation of a lymphocyte clone with immature NK cell characteristics and to stimulate IFN-gamma production in the clone. IL-4 is suggested as a potential growth factor for certain types of human NK cell progenitors.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M

Related Publications

K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
October 1988, Journal of immunology (Baltimore, Md. : 1950),
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
November 1990, Journal of immunology (Baltimore, Md. : 1950),
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
March 1990, Journal of immunology (Baltimore, Md. : 1950),
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
December 1991, Archives of surgery (Chicago, Ill. : 1960),
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
October 1996, Annals of the New York Academy of Sciences,
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
April 1998, Immunology and cell biology,
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
February 1999, Leukemia & lymphoma,
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
June 1991, Journal of immunology (Baltimore, Md. : 1950),
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
January 1996, Natural immunity,
K Hayakawa, and M A Salmeron, and J Kornbluth, and C Bucana, and K Itoh
August 2002, Neurochemical research,
Copied contents to your clipboard!